PHASE II GEO-ENVIRONMENTAL ASSESSMENT REPORT

Gibbons Way, Cornelli, Bridgend

October 2020

CIVIL | STRUCTURAL | GEOTECHNICAL & ENVIRONMENTAL | TRAFFIC AND TRANSPORT

Lawrence House | 6 Meadowbank Way | Nottingham | NG16 3SB 01773 535555 | design@hspconsulting.com | www.hspconsulting.com

Proposed Marlas School, Gibbons Way, Cornelli

Phase II Geo-Environmental Assessment Report

This report was produced by HSP Consulting Engineers Ltd for Gleeds Management Services Ltd on behalf of the Local Authority and Department for Education (DfE) as the Phase II Geo-environmental Assessment Report for the proposed Marlas School to identify possible areas of contamination and provide an assessment of potential ground related development constraints to inform feasibility.

This report may not be used by any person other than Gleeds Management Services Ltd, the Local Authority and Department for Education (DfE) and must not be relied upon by any other party without the explicit written permission of HSP Consulting Engineers Ltd. In any event, HSP Consulting Engineers Ltd accepts no liability for any costs, liabilities or losses arising as a result of the use or reliance upon the contents of this report by any person other than Gleeds Management Services Ltd, the Local Authority and the DfE.

All parties to this report do not intend any of the terms of the Contracts (Rights of Third Party Act 1999) to apply to this report. Please note that this report does not purport to provide definitive legal advice.

Issue & Revision History

Revision	Status	Originated	Checked	Approved	Date
-	FINAL	H. Brown B.Sc. (Hons), FGS	J. P. Bridgman BSc (Hons), CGeol, FGS	H.Pratt B.Eng (Hons), C.Eng, F.Cons.E, M.I.C.E, MI Mgt.	14.10.2020
Project Number: C3341				Document Reference: C3341/PII	

This document is available in hard copy, please contact the author to obtain a copy.

HSP Consulting Engineers Ltd, Lawrence House, 6 Meadowbank Way, Nottingham, NG16 3SB T 01773 535 555 W www.hspconsulting.com

Contents

1.		Introduction	1
	1.1	Background	1
	1.2	Client Brief & Scope	1
	1.3	Report Objectives	1
	1.4	Limitations	1
	1.5	Previous Reports	1
2.		Review of Existing Information & Geoenvironmental Setting	2
	2.1	The Site	2
	2.2	Geology	2
	2.2	Pertinent Site Sensitivity Information	3
3.		Fieldwork & Factual Information	4
	3.1	Exploratory Methods	4
	3.2	In-situ Testing	4
	3.3	Laboratory Testing	4
	3.4	Ground Conditions	6
	3.5	Groundwater Levels	6
	3.6	Ground Gas Monitoring	6
	3.7	Visual and Olfactory Evidence of Contamination	7
4.		Geotechnical Assessment	8
	4.1	Detailed Ground Model	8
	4.2	Earthworks	9
	4.3	Excavations	9
	4.4	Foundations1	0
	4.5	Ground Floor Slab1	1
	4.6	Concrete Classification1	1
	4.7	Pavement Design1	1
	4.8	Soakaway Testing1	1
5.		Environmental Assessment1	3
	5.1	Introduction1	3
	5.2	Assessment of Soil Analysis Results1	3
	5.3	Human Health Mitigation1	4
	5.4	Ground Gas Risk Assessment1	4

5.5	Water Supply	.15
5.6	Waste Classification	.15
5.7	Updated Conceptual Site Model	.15
6.	References	.17

Appendices

Appendix I	-	Site Location and Test to Fit Plan
Appendix II	-	Exploratory Hole Logs
Appendix III	-	Ground Investigation Layout Plan
Appendix IV	-	Geotechnical Analysis and Soakaway Results
Appendix V	-	Chemical Analysis Results
Appendix VI	-	HazWasteOnline [™] Waste Classification Results
Appendix VII	-	Ground Gas Monitoring Certificates
Appendix VIII	-	Mexecone Probe Test Results
Appendix IX	-	Infiltration Testing Certificates

Executive Summary

HSP Consulting has been commissioned by Gleeds Management Services Ltd on behalf of the Department for Education (DfE) to undertake an intrusive ground investigation at the site to confirm the existing ground conditions within a specific boundary and to provide information on likely constraints to the development, preliminary parameters for design and recommendations for any mitigation measures should they be required to inform a feasibility study.

The site is located off Gibbons Way in the north east of North Cornelly Village, approximately 9km north east of Bridgend. The approximate National Grid Reference for the centre of the site is (NGR) 282109, 181862.

The exploratory methods of investigation were seven windowless sample boreholes, two cable percussive boreholes and an infiltration (soakaway) test. The ground conditions encountered were generally made ground underlain by superficial deposits of Devensian Till and bedrock deposits of the Mercia Mudstone Group.

Traditional strip or pad footings may be appropriate and should be at a minimum depth of 0.75m. However, there are relative soft spots at shallow depth and areas of deeper made ground. Therefore, it is likely that deepening of foundations will be required to ensure they bear upon competent strata. At 2m depth begl an allowable bearing pressure of 150kN/m² should be readily achievable when utilising a 2mx2m pad foundation within the firm and medium dense deposits Where straddling of both fine and coarse soils within the foundations is unavoidable nominal mesh reinforcement will be required to limit differential settlement.

It is considered appropriate to adopt a basic Design Sulphate Class of DS-1 together with and Aggressive Chemical Environment for Concrete (ACEC) of AC-1.

Comparison of infiltration data with table 7.1 Permeability and Drainage Characteristics of Soils Terzaghi and Peck indicates the soils generally to be of poor drainage. Therefore it is considered that the natural soils in the area of SK01 are unlikely to be suitable for infiltration drainage.

The screening process for on-site human health receptors show that the GACs, representative of minimal risk for a residential without plant uptake setting were not exceeded. Ground gas concentrations have been monitored on four occasions in order to obtain an indication of the ground gas regime at the site. Comparison of the steady state gas screening value with Table 8.5 of the CIRIA document indicates the site falls in a Characteristic Situation 1 and therefore gas protection measures will not be required for the proposed development.

Based on the chemical analysis report it is considered that specialist materials will not be required for water supply pipes. However, confirmation of water supply pipes should be sought from utility providers.

The executive summary contains an overview of key findings and conclusions. However, no reliance should be placed on the executive summary until the whole of the report has been read. Other

sections of the report may contain information which puts into context the findings noted within the executive summary.

1. Introduction

1.1 Background

This report has been prepared to support a feasibility study, detailed development plans have not been provided, it is understood that the intention is for a one to two storey school with car parking and associated hard and soft landscaping.

1.2 Client Brief & Scope

HSP Consulting has been commissioned by Gleeds Management Services Ltd on behalf of the DfE to undertake an intrusive ground investigation at the site to investigate the existing ground conditions and provide information on likely constraints to the development, preliminary parameters for design and recommendations for any mitigation measures.

The report presents the following information:

- a summary of the previous Geo-environmental Reports (Section 1.5 below).
- details of the ground investigation undertaken and the ground conditions encountered.
- details and results of the geotechnical testing and contamination analysis.
- recommendations for mitigating constraints to the proposed redevelopment where appropriate and providing parameters for foundation design.

Where applicable, the fieldwork was undertaken in accordance with BS5930:2015 Code of Practice for Site Investigations and BS10175:2011+A1:2013 Investigation of Potentially Contaminated Sites.

1.3 Report Objectives

The objectives of this report are to:

- establish the geological and hydrogeological conditions using existing available/published information.
- summarise available information and identify site specific geotechnical and environmental hazards which may place a constraint upon the proposed site use.
- produce an updated Conceptual Site Model identifying potential pollution linkages between sources of contamination, pathways and receptors.

1.4 Limitations

The recommendations made in this report are based on the findings of the intrusive ground investigation undertaken by HSP Consulting Ltd on the 7th, 11th and 24th to 25th August 2020.

1.5 Previous Reports

HSP Consulting Engineers Ltd has previously produced a Phase I Desk Study report for the site, details of which can be found below:

• HSP Consulting Engineers Limited, Land off Gibbons Way - Phase I Geo-Environmental Desk Study Report, September 2020, Ref: C3341/PI.

2. Review of Existing Information & Geoenvironmental Setting

2.1 The Site

2.1.1 Location

The site is located off Gibbons Way in the north east of North Cornelly Village, approximately 9km north east of Bridgend. The approximate National Grid Reference for the centre of the site is (NGR) 282109, 181862. A Site Location Plan is included in Appendix I.

2.1.2 Description

The site is irregular in shape and approximately 2.06Ha in area. Two thirds of the site is open space bound by Gibbons Way beyond which the remaining third of the site is occupied by housing, a hard play MUGA court and a training centre (modular construction) with car park. The open space is mown grass with a central asphalt concrete square and footpaths linking the areas of housing The levels across the site rise gently from the southwest to the north east with a rapid increase in elevation including terracing and low level retaining walls in the south east of the site.

2.1.3 Surrounding Land Use

The main features of interest identified are:

- North: Residential properties with roads and soft landscaping areas.
- East: Pill-Y-Cynffig & Ael-Y-Bryn (highways) with residential properties and gardens.
- South: Public open space with residential properties and gardens.
- West: Heol-Y-Parc (highways) with residential properties beyond.

2.1.4 Proposed End Use

The Test to Fit plan (Appendix I) indicates the proposed development will include a two storey school with car parking, extensive soft and hard play areas (grass playing fields and MUGA) surrounding the proposed school.

2.2 Geology

2.2.1 Made Ground

The BGS mapping does not indicate any made ground on the site. However, given the historical development on the site some made ground should be expected.

2.2.2 Superficial Deposits

The BGS mapping indicates the majority of the site to be underlain by superficial Till deposits. No superficial deposits are expected to be encountered in the south eastern corner of the site.

2.2.3 Bedrock Geology

BGS bedrock mapping indicates the majority of the site is underlain by the Mercia Mudstone Ground – Mudstone of the Triassic Period, described by the BGS as '*Dominantly red*, *less commonly green-grey, mudstones and subordinate siltstones with thick halite-bearing units in*

some basinal areas. Thin beds of gypsum/anhydrite widespread; sandstones are also present.'

The mapping indicates the south eastern corner of the site is underlain by the Blue Anchor Mudstone Formation of the Triassic Period. These deposits are described by the BGS as 'typically comprises pale green-grey, dolomitic silty mudstones and siltstones with thin arenaceous lenses and a few thin, commonly discontinuous beds of hard, dolomitic, pale yellowish-grey, porcellanous mudstone and siltstone.'

2.2 Pertinent Site Sensitivity Information

Based on the information collated for the desk study, the geo-environmental setting of the site is summarised as follows:

- The site is recorded as part of three fields on the 1st Edition mapping (1881). Gibbons Way and residential housing are shown in the centre, east and south of the site by 1969. The buildings in the centre and south of the site are no longer shown by 2009 and 2013 respectively.
- Historically, the surrounding land use was predominantly agricultural with limited development until the mid 1960's when the village of North Cornelly expands, and the land uses becomes mainly residential.
- The BGS mapping does not indicate any made ground on the site. However, limited made ground may be present associated with the development in the centre, east and south of the site. Any Made Ground encountered would be of an unknown composition.
- The majority of the site is underlain by superficial Till deposits. No superficial deposits are expected to be encountered in the south east of the site.
- Bedrock geology of the Mercia Mudstone Group is expected to be encountered across the majority of the site, with the Blue Anchor Mudstone Formation expected in the south east of the site.
- The superficial deposits have been designated as a Secondary Undifferentiated Aquifer. The bedrock geology are both designated as Secondary B Aquifers.

Based on the above, the environmental sensitivity of the site can be considered to be Low to Moderate at this stage.

3. Fieldwork & Factual Information

Site work was carried out on the the 7th and 11th August 2020 soakaway testing undertaken between the 24th to 25th August 2020. Where applicable, the fieldwork was undertaken in accordance with BS5930:2015 Code of Practice for Site Investigations (Ref. 6) and BS10175:2011+A1:2013 Investigation of Potentially Contaminated Sites (Ref. 8).

The exploratory holes were positioned to provide spatial coverage across the site to provide information for preliminary foundation design and obtain representative soil samples for geotechnical and geo-environmental analysis.

3.1 Exploratory Methods

The exploratory methods are detailed in the table below.

Туре	Quantity	Maximum Depth (m)	Details
Windowless Sampling Borehole	7	5.00	WS01 to WS07
Cable Percussive Boreholes	2	6.40	BH01 – BH02
In-Situ Infiltration Tests (Soakaways)	1	3.50	SK01
Mexecone Probe Tests	5	0.60	MEXE01 to MEXE05

Table 1 - Exploratory Methods

The exploratory holes were logged and sampled by an Engineer from HSP Consulting Ltd and the logs are presented in Appendix II. The exploratory hole locations are shown on the Ground Investigation Layout Plan presented in Appendix III.

Fragmentary bulk and disturbed samples were recovered from materials revealed within all the exploratory holes. Geo-environmental samples, placed in plastic tubs and glass jars supplied by the laboratory, were also obtained specifically for chemical analysis. The samples were taken to UKAS accredited laboratories for further examination and testing.

3.2 In-situ Testing

3.2.1 Standard Penetration Tests

Standard Penetration Tests (SPTs) were carried out at 1.00m intervals in the boreholes. The SPTs were undertaken in accordance with BS 1377:1990 and the results are included on the appended borehole logs (Appendix II).

3.2.2 Mexecone Probe Tests

Mexecone Probe Tests were positioned across the areas of the proposed MUGA Pitches to obtain an indication of the likely California Bearing Ratio within these areas. The results are included within Appendix VIII.

3.3 Laboratory Testing

The laboratory testing schedules were prepared by HSP Consulting Ltd.

3.3.1 Geotechnical Testing

Geotechnical testing has been undertaken by a UKAS accredited laboratory as part of the works at the site:

- Plasticity Index
- Particle Size Distributions
- Natural Moisture Contents

The laboratory testing was carried out by Professional Soils Laboratory (UKAS accredited, laboratory No.4043) and Apex Testing Solutions Laboratory (UKAS accredited, laboratory No.7771) in accordance with BS1377:1990 using calibrated equipment specifically for the British Standard.

3.3.2 Chemical Analysis

The geo-environmental samples retained specifically for chemical analysis were stored in cooled containers until delivery to the laboratory by courier.

Chemical analysis was scheduled on eight samples for the presence of a selected suite of potential contaminants as outlined in the tables below:

Table 2a – Chemical Analysis	
Exploratory Hole Location & Depth	Sample Description
WS2 0.20m – 0.30m	MADE GROUND ^{1,2,4}
WS2 0.45m – 0.55m	MADE GROUND ^{1,3}
WS3 0.35m – 0.45m	CLAY 1.2.3.4
WS4 0.45m – 0.55m	MADE GROUND ^{,1,4}
WS5 0.35m – 0.45m	MADE GROUND ^{1,2,4}
WS6 0.30m – 0.40m	CLAY ¹
WS7 0.30m - 0.40m	CLAY ^{1,2}
WS7 0.60m – 0.70m	CLAY ^{1,4}
BH01 2.00m	GRAVEL ³
BH02 3.00m	GRAVEL ³
WS07	WATER ⁵

¹ HSP Standard Suite, ² Organic Matter, ³BRE Sulphate Suite, ⁴Asbestos Screen and ID ⁵Water Soluble Sulphate and pH

Table 2b – Chemical Analysis	Table 2b – Chemical Analysis							
Metals	Cadmium	Chromium (III & VI)	Copper					
	Lead	Mercury	Nickel					
	Zinc							
Semi Metals and Non-metals	Arsenic	Boron	Selenium					
Others	pН							
Inorganic Chemicals	Cyanide	Sulphate	Sulphide					
Organic Chemicals	PAH (US EPA 16)	TPH (CWG)						

The contamination analysis was carried out by Chemtest Ltd (UKAS accredited, laboratory No. 2183) during the period 17th to 21st August 2020. With further testing undertaken between 15th and 18th September 2020. The results are presented in Appendix V.

3.4 Ground Conditions

3.4.1 Published Geology

The published geology indicates the site is underlain by superficial till deposits and bedrock geology of Mercia Mudstone Group and the Blue Anchor Formation, as described in Sections 2.2.2 and 2.2.3 respectively.

3.4.2 Ground Conditions on site or General Geology & Revealed Strata

The exploratory hole data confirms the published information. The strata generally comprises:

Table 3	Table 3 – Encountered Ground Conditions							
	Strata	Depth Range (mbegl)	Max. Thickness (m)	Description				
		G.L - 0.04	0.04	MADE GROUND comprising grey weathered asphalt concrete.				
ogenic		0.04 – 0.40	0.36	MADE GROUND comprising grey sandy gravel. (Sub-base material).				
Anthropogenic	MADE GROUND	G.L – 0.30	0.30	MADE GROUND comprising dark brown sandy gravelly clayey topsoil.				
A		0.20 – 2.30	2.10	MADE GROUND comprising dark brown to brown very sandy very gravelly clay.				
Superficial	DEVENSIAN TILL	0.20 – 3.90	3.65	Firm to stiff dark brown to brown and orange mottled very sandy to slightly sandy very gravelly CLAY.				
Super		1.80 – 5.00	2.50	Medium dense to very dense brown slightly clayey SAND and GRAVEL.				
ock	MERCIA MUDSTONE			Firm reddish brown slightly sandy slightly gravelly CLAY.				
Bedrock	GROUP	4.50 – 6.40	0.90	Extremely weak weathered reddish brown MUDSTONE.				

3.5 Groundwater Levels

Groundwater was not encountered during the intrusive works.

Groundwater levels have been monitored on four occasions during the ground gas monitoring visits. Groundwater levels were encountered at depths between 2.78m to 2.80 within WS01 (indicating dampness or limited water ingress at the base of the installation) and WS06 was dry. It must be noted that WS07 was encountered as flooded on one occurrence with subsequent visits noting water levels between 0.84m and 0.89m depth, these readings considered to be anomalous and the result of meteoric water entering the borehole and being unable to drain due to the fine nature of the soils).

3.6 Ground Gas Monitoring

Dual use gas and groundwater monitoring installations were constructed within three of the boreholes at the site (WS01, WS06 and WS07). Each well has been constructed using 50mm diameter HDPE pipe with the top one metre being plain and the remainder slotted. All of the borehole installations have a 6mm pea gravel surround to the slotted pipe with a bentonite

seal above and a gas tap. The covers are cemented flush with ground level and are round lockable stopcock covers.

HSP Consulting uses a GFM 430 Gas Analyser. Prior to its use a calibration check can be performed against gas readings in air. It is recommended that this check is undertaken once on each day the analyser is used. Annual calibration is undertaken on the unit and a copy of this certificate has been included within Appendix VII with the results of the ground gas and water level monitoring.

The results of the ground gas monitoring are discussed in Section 5.3 below.

3.7 Visual and Olfactory Evidence of Contamination

No visual or olfactory evidence of contamination was observed during the intrusive investigation.

4. Geotechnical Assessment

4.1 Detailed Ground Model

For the purpose of this foundation assessment the information gained from the window sample boreholes and Cable Percussive Boreholes has been included. The exploratory logs are presented in Appendix II.

4.1.1 Made Ground

Made ground materials were encountered within all locations across the site and generally comprised Topsoil like material described as brown sandy gravelly clayey topsoil to a maximum depth of 0.30m depth. A single location (WS04) advanced through the hardstanding in the centre of site with concrete asphalt encountered to a maximum thickness of 0.04m depth. Made ground underlying the Topsoil and Hardstanding materials generally comprised brown very sandy very gravelly clay and was encountered at variable depths in the range of 0.25m to 2.30m depth within WS02.

4.1.2 Superficial Deposits

Superficial deposits of Devensian Till were encountered within all locations across the site. The deposits were variable in composition and comprised of both fine and coarse deposits. The fine deposits generally comprised firm to stiff brown and orange mottled very sandy very gravelly CLAY to a maximum depth of 3.90m with coarse deposits generally comprising medium dense to very dense slightly clayey to clayey SAND and GRAVEL to a maximum depth of 4.50m depth.

4.1.3 Bedrock Deposits

Bedrock deposits of the Mercia Mudstone were encountered within two exploratory locations (BH01 and BH02). These deposits generally comprised of firm reddish brown slightly sandy slightly gravelly CLAY to a maximum depth of 6.00m begl. Underlying these deposits, weathered mudstone was recorded and generally comprised extremely weak reddish brown MUDSTONE to a maximum depth of 6.40m begl, the base of the deposit was not penetrated. The Blue Anchor Mudstone Formation was not encountered during this investigation.

4.1.4 In-situ Testing and Assessment

A series of Standard Penetration Tests (SPT's) have been undertaken within all the boreholes. The following table summarises the N values at depth across the site.

Table 4 – SPT N Values			
Depth (m)	Range of 'N' Values	Mean 'N' Value	Description
1.00	8 – 25	12	MADE GROUND / CLAY
1.50	19	19	MADE GROUND / CLAY
2.00	15 – 47	34	MADE GROUND / CLAY / GRAVEL
2.50	42	42	CLAY
3.00	22 - 50	42	CLAY / GRAVEL
4.00	13 - 29	21	CLAY / GRAVEL
5.00	13 - 50	32	CLAY / MUDSTONE
6.00 - 6.40	50	50	MUDSTONE

Two Particle Size Distribution and four Plasticity Index tests have been undertaken to confirm the visual description and engineering behaviour of the soils. The results are presented within Appendix IV.

The results indicate compliance with the definition of soils of low to intermediate plasticity (CL - CI) after the classification system of BS5930: 2015. Fine soils across the site are considered to be of a Low to Moderate Volume Change potential in accordance with the National House Building Council (NHBC) Standards, Chapter 4.2: 2007.

Table 5 - Plasticity and Volume Change Potential								
Sample Ref:	Laboratory Material Descriptions	LL (%)	PL (%)	PI (%)	% passing 425µm	Modified PI (%)*	Soil Class	MC (%)
WS2 2.50m	Brown slightly gravelly CLAY.	33	17	16	97	16	CL	20.5
WS4 1.00m	Brown CLAY	28	14	14	100	14	CL	17.7
WS5 0.70m – 0.80m	Greyish brown slightly gravelly CLAY	41	21	20	99	20	CI	24.5
WS6 – 1.20m	Brown slightly gravelly CLAY	31	14	17	89	15	CL	22.3

* Rounded up

4.2 Earthworks

Current test to fit plans indicate a school in the north east of the site. The site is relatively flat, with the exception of a raised roundabout and embankment in the south east of the site, which it is at a higher topographical level compared to the remainder of the site. Therefore, it is envisaged that limited earthworks will be required.

Should any earthworks be required, further investigation and materials testing of site soils would be required to classify and make an assessment of the suitability for re-use as engineered fill.

4.3 Excavations

Excavations to proposed formation level for new foundations and infrastructure should be feasible using standard excavation plant and equipment. Random and potentially severe falls are anticipated from the faces of near vertically sided unsupported excavations carried out at the site. Therefore, where personnel are required to enter near vertically sided excavations, it is considered that support should be provided to the full depth of all excavations.

It is recommended that all support systems are continually assessed by fully trained or experienced personnel.

No groundwater entries encountered during the intrusive works, with subsequent monitoring encountered water between 2.78m and 2.80m, but these are not considered to be significant ground or perched water. Should shallow groundwater entries be encountered at the site during groundwork operations traditional sump and pump dewatering should be sufficient if required.

4.4 Foundations

The test to fit option (Appendix I) indicates a one to two storey school with car parking and associated hard and soft landscaping.

For the purpose of this foundation assessment the information gained from all exploratory locations have used for this foundation assessment.

The table below shows the indicative allowable bearing pressure (ABP) that could be achieved using strip or pad foundations across the building footprint. The ground conditions are variable across the site and therefore an ABP has been calculated using the worst case SPT at each depth interval.

Depth (m)	SPT (N₁)₀₀ Value	Eurocode 7 Soil Strength Description	Consistency (BS5930) Description	Approximate ABP (k/Nm²) – 0.60m wide strip footing	Approximate ABP (kN/m ²) – 2x2m pad footing	
1.00	8	Medium Strength	Firm	60	60	
2.00	16	Medium Strength	Firm / Medium Dense	145	150	

Table 5 – Allowable Bearing Capacity

Design loadings have not been provided. The Made Ground materials are not considered to be suitable as a formation layer, these were encountered to depths in the range of 0.25m to 2.30m begl across the site.

The natural superficial deposits encountered are considered to be a suitable formation layer where they are encountered in a firm condition from a minimum of 0.75m depth. However, care should be taken to deepen the foundations through any made ground materials at least 200mm into the competent natural soils.

Traditional strip or pad footings may be appropriate and should be at a minimum depth of 0.75m. However, there are relative soft spots at shallow depth (WS01, WS05 and WS06 SPT N value of 7-8 at 1.00m depth) and the ABP at 1m is unlikely to be sufficient for the likely loadings. Therefore, deepening of foundations will be required to ensure they bear upon competent strata. At 2m depth begl an allowable bearing pressure of 150kN/m² should be readily achievable when utilising a 2mx2m pad foundation within the firm and medium dense deposits Where straddling of both fine and coarse soils within the foundations is unavoidable nominal mesh reinforcement will be required to limit differential settlement. The foundation recommendations should be reassessed once the design loadings, layout and levels are more certain.

The soils on site are of low and medium volume change potential. Foundations should be deepened and designed in accordance with NHBC Chapter 4.2 Building near trees (Ref. 9) where appropriate.

4.5 Ground Floor Slab

A ground bearing slab may be appropriate for the school building due to the likely light loadings. However, there is deep made ground on site in the area of the test to fit building and made ground materials may require to be excavated and recompacted or replaced with engineered fill or a suspended slab could be considered.

In addition to the above, the use of ground bearing floor slabs would also be dependent on any associated ground gas protection measures, see section 5.6 below. Reference should also be made to NHBC Standards Chapter 4.2 to confirm the floor slab type.

4.6 Concrete Classification

The results of sulphate and pH testing carried out on selected soil samples taken during this investigation have been compared with the recommendations outlined in BRE Special Digest 1, Part 1: 2005. (Ref 12)

The guidelines given in BRE Special Digest 1 are based upon a site classification relating to its previous usage. It is considered appropriate to define this site as a 'Brownfield Site' location for the purposes of concrete classification.

On the basis of the above, it is considered appropriate to adopt a basic Design Sulphate Class of DS-1 together with and Aggressive Chemical Environment for Concrete (ACEC) of AC-1 generally.

4.7 Pavement Design

MEXE probe tests were undertaken at five locations across the site. From this an indicative California Bearing Ratio (CBR) can be provided. The results are included in Appendix VIII.

Made Ground was encountered across the site and generally comprising of very sandy very gravelly clay, with gravels of brick and concrete. The MEXE Probe tests recorded results ranging between 6% and 14% at depths between 150mm and 300mm. The maximum results could be overstated due to the presence of anthropogenic materials.

Following guidance provided within 'Design Manual for Roads and Bridges Volume 7 Section 2 Chapter 2' the CBR value chosen for design should be the minimum measured value, not the average. Due to the variability in the test results on relatively similar materials it is recommended that further testing is undertaken once the development is at formation level to confirm the design CBR value for the site. Until further testing is undertaken a CBR value of 1% should be adopted for design.

4.8 Soakaway Testing

Soakaway testing was undertaken at the site between the 24th and 25th August 2020 in a single location at a depth between 2.30m and 3.50m begl. The test pit were outside the proposed building footprint.

SK01 returned an infiltration rate of 7.71×10^{-6} m/s.

Comparison of this data with table 7.1 Permeability and Drainage Characteristics of Soils Terzaghi and Peck indicates the ground to be of poor drainage and it is therefore considered that the natural soils in the area of SK01 are unlikely to be suitable for infiltration drainage. The testing certificates can be found in Appendix IX.

5. Environmental Assessment

5.1 Introduction

The approach to the human health risk assessment reported here follows the principals given in CLR 11, i.e. application of the following assessment hierarchy:

- Tier 1 risk screening by establishment of potential pollutant linkages, i.e. the preliminary conceptual site model (PCSM), or
- Tier 2 generic quantitative assessment using generic assessment criteria (GACs) that represent 'acceptably low' risk, or
- Tier 3 quantitative risk assessment using site specific assessment criteria (SSACs) that represent 'unacceptable risk', or where generic assessment criteria are not available or they are not applicable to the CSM.

The results of laboratory analysis have been screened against GACs including the Defra Category 4 Screening Levels (C4SL) and LQM and CIEH S4ULs for Human Health Risk Assessment (Copyright Land Quality Management Limited reproduced with permission; Publication Number S4UL3180. All rights reserved). (Refs 10 and 11 respectively).

In the absence of a standard scenario for a school environment the standard exposure scenario of residential without home grown produce has been used to identify potential exposure pathways for human health receptors. Controlled water, flora and fauna and property receptors have also been included within the CSM. Our Tier 2 HHRAs for school sites are screened against the GACs representative of minimal risk for residential without home grown produce end use, we believe this to be appropriate based on the precautionary principle the CLR guidance advocates.

It should be noted that organic contamination (PAH, TPH and BTEX) have been screened against the GAC for 1% Soil Organic Matter (SOM).

The assessment of PAHs is undertaken using the surrogate marker approach; recommended by Health Protection Agency (2010) guidance (Ref 17), providing the PAH profile is sufficiently similar to the coal tars tested by Culp et al (1998). Where PAH profile is not sufficiently coal tar like the TEF method is adopted using the LQM and CIEH S4ULs. Prior to assessment a PAH profile is generated for all samples analysed for PAH using the LQM PAH Profiling Tool v1.3, the graphical output is presented in Appendix V.

5.2 Assessment of Soil Analysis Results

Eight samples, as detailed in section 3.3.2, were scheduled for analysis from the development area. These provide a basis for characterising the soils to outline the potential impacts on human health and any environmental receptors from any contamination found.

The screening process for on-site human health receptors show that the GACs, representative of minimal risk for a residential without plant uptake setting were not exceeded.

5.3 Human Health Mitigation

The concentrations of potential contaminants recorded at the site indicates an acceptably low risk and therefore mitigation measures are not required as part of the development.

Should any obvious evidence of unexpected contamination be encountered during the redevelopment works it should be reported to HSP so that an inspection can be made and appropriate sampling and assessment work be carried out.

Appropriate health and safety precautions should be adopted during any excavation works to avoid exposure to contaminated soils and dust. Reference to the HSE document HSG 66 'Protection of workers and the General Public during Redevelopment of Contaminated Land'.

The approval of the local Environmental Health Officer should be sought with respect to the soil contamination assessment and mitigation proposals.

5.4 Ground Gas Risk Assessment

For the purpose of this assessment, the school is classified as Building Type B; as outlined in Table 3 of BS8485:2015 Code of Practice of the design of protective measures for methane and carbon dioxide ground gas for new buildings (Ref 14). This is a conservative assessment, subject to change once the building occupancy and maintenance controls are better defined.

Ground gas concentrations have been monitored on four occasions in order to obtain an indication of the ground gas regime at the site. The results indicate that methane has not been recorded above the monitor's limit of detection (<0.1%vol). Carbon dioxide has been recorded at a maximum concentration of 3.4% vol in air in WS01. Steady state gas have not been recorded on site. From the results of above, the maximum steady state gas screening value (GSV) for the site is 0.034l/hr.

The results have been assessed in line with the guidance provided in BS8485:2015+A1:2019 Code of Practice of the design of protective measures for methane and carbon dioxide ground gas for new buildings (Ref 14) and CIRIA Document C665 'Assessing Risks Posed by Hazardous Ground Gases to Buildings' (Ref 15). Comparison of the steady state gas screening value with Table 8.5 of the CIRIA document indicates that the site falls into a Characteristic Situation 1, and therefore ground gas protection measures are not required at this stage as part of a school development.

Depleted oxygen levels were occasionally observed within a number of the boreholes during the monitoring. This poses a risk of asphyxiation to construction and maintenance workers in confined spaces such as excavations or manhole chambers. A confined spaces risk assessment should be carried out prior to working in any buried structures or excavations.

The results of the ground gas monitoring can be found within Appendix VII.

5.5 Water Supply

The environmental analysis for the site has been compared to the following document in order to assess the most appropriate pipe material that should be used upon the site for mains water supply:

'Guidance for the selection of water supply pipes to be used in Brownfield sites – UK Water Industry Research – Ref: 10/WM/03/21.' (Ref. 20)

The chemical results show no exceedances of the threshold values for PE and PVC pipes. It is therefore considered that specialist materials are unlikely to be required for water supply pipes at the site. Confirmation of supply pipes should always be sought from utility providers.

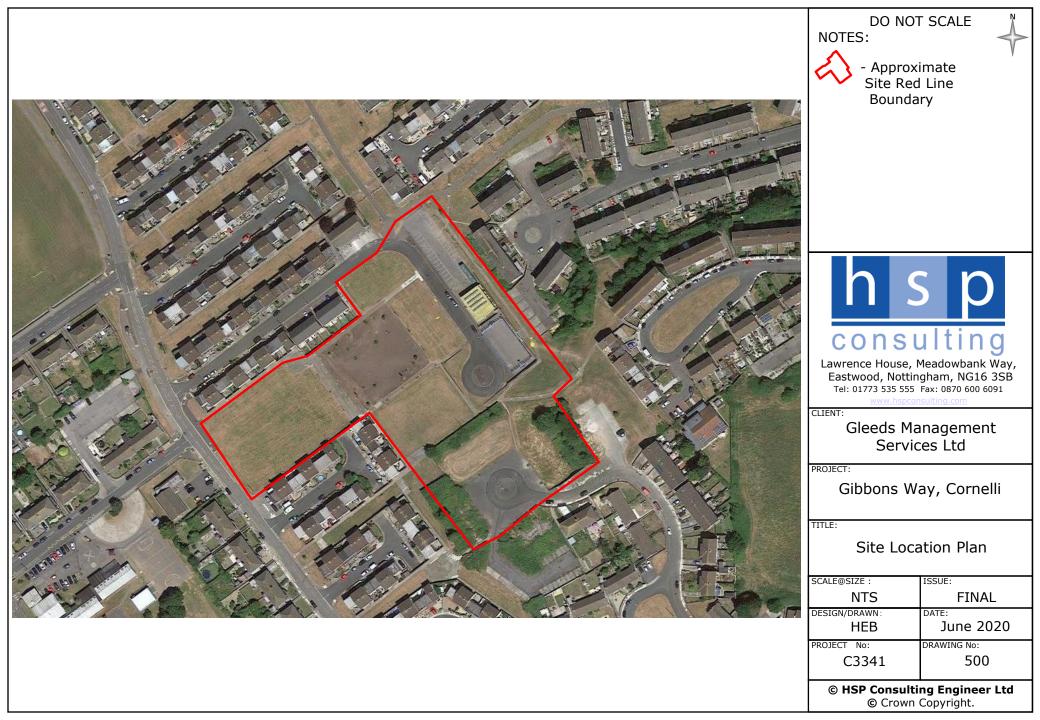
5.6 Waste Classification

The results of the chemical testing have been assessed using web-based software for classifying hazardous waste, using HazWasteOnline[™]. The materials tested are likely to be classified as non-hazardous. The results are included in Appendix VI.

5.7 Updated Conceptual Site Model

The PCSM and Summary of plausible pollutant linkages was produced by undertaking a Source-Pathway-Receptor analysis of the site and is present in the Desk Study (Ref. 1). Based on the findings of this and the previous investigation the conceptual site model has been updated and is presented in the table below.

Table 9 – Updated Conce		Decenter	C	Duckshillter	Diele	0
Source	Pathway	Receptor	Consequence	Probability	Risk	Comments
	 P1: Human uptake pathways direct contact, ingestion of soils and dust, inhalation of fugitive dust. 	R1: End Users R2: Construction and maintenance workers	Minor	Low	Very Low	Concentrations of contaminants of concern were below the relevant GACs within the near surface deposits sampled across the site and therefore the risk is considered to be VERY LOW
On site S1: Historical and Contemporary land	 P2: Horizontal and vertical migration of contaminants through potentially permeable soils and rocks. P3: Migration of contaminants along preferential pathways (man-made). P4: Surface runoff. 	R3: Controlled Water: Groundwater & Surface Water	Mild	Low	Very Low	Bedrock geology underlying the site are classified as a Secondary B Aquifer. No significant contamination was identified during the ground investigation and therefore the risk to controlled water is considered to be VERY LOW.
use: Agricultural land, Historical Sandstone Quarry Off Site (within	P5: Vertical and lateral migration of ground gases and/or vapour	R1: End Users R5: Adjacent Residential Properties	Mild	Unlikely	Very Low	Ground gas concentrations have been monitored on four occasions, in order to obtain an indication of the ground gas regime at the site. The results indicate the site is characterised as CS1. Gas protection measures are therefore not considered necessary and the risk is considered to be VERY LOW.
S2: Historical and Contemporary land use: Agricultural land, industrial processes relating to furniture production.	 P2: Horizontal and vertical migration of contaminants through potentially permeable soils and rocks. P3: Migration of contaminants along preferential pathways (man- made). P4: Surface runoff. 	R4: Property, services and substructures	Mild	Low	Very Low to Low	The natural soils may contain sulphates that present a risk to buried concrete. Testing indicates Design Sulphate Class of DS- 1 together with an Aggressive Chemical Environment for Concrete (ACEC) of AC-1 for the majority of the soils sampled. The chemical analysis of the soils indicates specialist materials are unlikely to be required for water supply pipes at the site. However, confirmation of supply pipes should be sought from utility providers.
	P6: Root uptake.	R6: Proposed Flora and fauna	Minor	Low	Very Low	Extensive planting is unlikely therefore the risk of uptake to proposed flora and fauna is VERY LOW.



6. References

- 1. HSP Consulting Engineers Limited, Land off Gibbons Way, Bridgend Phase I Geo-Environmental Desk Study Report, September 2020, Ref: C3341/PI.
- 2. BRITISH GEOLOGICAL SURVEY. 1990. Bridgend. England and Wales Sheet 262. Solid and Drift. 1:50 000 (Keyworth, Nottingham: British geological Survey).
- 3. British Geological Survey Lexicon Search http://www.bgs.ac.uk/lexicon/
- 4. Department of the Environment Industry Profiles.
- 5. Site Investigation in Construction, Volume 3, Specification for Ground Investigation 2nd Edition.
- 6. BS 5930:2015 Code of Practice for Ground Investigations.
- 7. BS 8576:2013 Guidance on investigations for ground gas. Permanent gases and Volatile Organic Compounds (VOCs)
- 8. BS10175:2011 +A1:2013 Investigation of Potentially Contaminated Sites Code of Practice.
- 9. NHBC Standards, Chapter 4.2, Building near trees.
- 10. Department for Environment, Food and Rural Affairs and Contaminated Land: Applications in Real Environments (CL:AIRE) (December 2013). SP1010: Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination.
- 11. Nathanail, C.P., McCaffrey, C., Gillett, A.G., Ogden, R.C. and Nathanail, J.F. 2015. The LQM/CIEH S4ULs for Human Health Risk Assessment. Land Quality Press, Nottingham.
- 12. BRE Special Digest 1:Concrete in Aggressive Ground, 2005, Building Research Establishment.
- 13. CL:AIRE The definition of Waste: Development Industry Code of Practice, 2008.
- 14. BS8485:2015 + A1:2019 Code of practice for the design of protective measures for methane and carbon dioxide ground gases for new buildings.
- 15. CIRIA C665 'Assessing Risks Posed by Hazardous Ground Gases to Buildings'
- 16. NHBC & RSK Group Plc, March 2007. Guidance on evaluation of development proposals on sites where methane and carbon dioxide are present. Ed 4.
- 17. Department for Environment, Food and Rural Affairs and Contaminated Land: Applications in Real Environments (CL:AIRE) (December 2013). SP1010: Appendix E Provisional C4SLs for Benzo(a)pyrene as a surrogate marker for PAHs.
- 18. www.environment-agency.gov.uk
- 19. Environment Agency, Freshwater Environmental Quality Standards (EQS) contained in the Hydrogeological Risk Assessment for Landfills and the Derivation of Groundwater Control and Trigger Levels, 2015.
- 20. HMSO, Water Supply (Water Quality) Regulations, 2002.
- 21. Design Manual for Roads and Bridges Volume 7 Section 2 Chapter 2
- 22. UK Water Industry Research, Guidance for the selection of water supply pipes to be used in Brownfield sites, Ref:10/WM/03/21.
- 23. BS3882:2015. Specification for Topsoil.
- 24. Terzaghi, K., Peck, R.B., Mesri, G. 1996. Soil Mechanics in Engineering Practices.

Appendix I

Subterranean service

No structures within this zone proximity to neighbouring properties

Red line boundary

Pedestrian Access

Current Access Points

Main Vehicular Route

Drainage Ditches

Existing Trees

Existing Hedgerow

 \sim

Noise

Overhead Cables

Foot Bridge

Existing Right of Way

Building for Demolition

1 Photo View

Gradient / Embankment

+39.0m Level

Marla	s Primary	School	
Sc	hool Spec	ifics:	
No. of pupils	420		
FTE staff	19.2		
Total E	Building A	.rea / m2	
Generated from BB99	2.770	Test Scheme	Difference
Childcare	0	0	0
Basic Teaching	1267	1270	3
Hall	325	325	0
Learning resources	112	112	0
Staff & Admin	164	164	0
Storage	216	220	4
Float	147	151	4
Total	2,230	2,242	12
BB99 E	xternal Sp	aces / m2	
Pitches	8,400	4000	-4,400
Soft play	1,850	1678	-172
Games courts	1,440	1740	300
Hard play	1,030	1036	6
Habitat	620	516	-104
Float	2,100	0	-2,100
Total Net	15,440	8970	-6470
	Parking)	
No. of Spaces	22	22	0
Min Other	2,360		
Max Other	4.820		
Childcare			
Min Total Gross	17,320		
Max Total Gross	19,300		

Points of Note.

- School located as far away from surrounding buildings as possible
- Site boundary amended to exclude the residential blocks for demolition, and extended to the south east.
- School areas shown are based on BB99 Gross Floor areas.
- Adjacencies have yet to be resolved.
- School based on a two storey design, in response to surrounding buildings. This looks like it needs to go two storey to achieve external areas.

Site Access.

- Vehicular access off Gibbons Way.
- Pedestrian access opportunities aviailable from all sides.
- Propose pedestrian access on south east side, opposite main vehicular access.

Phasing and Delivery.

- To be considered in conjunction with the new school at Cornelly.
- Marias to be built, then facilitating decant from Corneliy School from the other site, into this school.
- This site: demolition of existing vacant residential blocks at the north east end of the site to take place first.

Utilities:

Not currently known.

Scale: 1:1000 @ A3

0 5m 10m 20m 50m

Appendix II

h	S	O				Ro	roha	ole Log	Borehole No BH01	
cons	ulti	ng				DU		JE LUY	Sheet 1 of	
Project N	ame:	Gibbons W	/ay, No		oject No. 341		Co-ords:	-	Hole Type CP	3
ocation:		Gibbons W	/ay, No	orth Cornelly			Level:		Scale 1:50	
lient:		Gleeds Ma	anager	ment Services Ltd			Dates:	-	Logged By HB	у
	ater	Samples	s and	In Situ Testing	Depth	Level	Legend	Stratum Description		
Str	rikes	Depth (m) 0.00 - 1.00	Туре В	Results	(m)	(m)		MADE GROUND - Brown sandy gra	velly clayey	L
		1.00 1.00 - 1.40	В	N=25 (6,4/4,7,7,7)	0.25			topsoil. Gravel is fine to coarse and to angular of mixed lithology, brick a MADE GROUND - Brownish grey sa gravel. Sand is fine to coarse. Grave of concrete and brick.	sub rounded nd concrete	1
					1.40			MADE GROUND - Grey sandy grav fine to coarse. Gravel is angular of o		
		2.00 2.00 - 2.50	В	N=40 (7,8/8,10,11,11)	2.00			Very stiff brown sandy gravelly CLA fine to coarse. Gravel is angular to s of mixed lithologies and low cobble	ub rounded	2
		3.00 3.00 - 3.50 3.00 - 3.50	B T	N=22 (4,4/7,5,5,5)	3.00			Medium dense brownish grey grave SAND. Sand is fine to coarse. Grave of mixed lithologies. Low cobble cor	el is angular	3
		4.00 4.00 - 5.00	В	N=13 (8,8/5,4,2,2)	4.00			Medium dense brownish grey sandy GRAVEL. Sand is fine to coarse. Gr angular to rounded of mixed litholog cobble content.	avel is sub	4
		5.00 5.00 - 6.00	В	N=13 (1,4/4,3,3,3)	5.00			Firm reddish brown slightly sandy sl gravelly CLAY. Sand is fine to coars sub angular of mudstone.	ightly e. Gravel is	
		6.00		N=50 (6,3/50 for 265mm)	6.00			Extremely weak weathered reddish MUDSTONE. Recovered as a slight		6
		6.00 - 6.40 6.00 - 6.40	B T		6.40			gravelly clay. Sand is fine to mediun angular of mudstone. End of borehole at 6.40 m		
										1
emarks										10

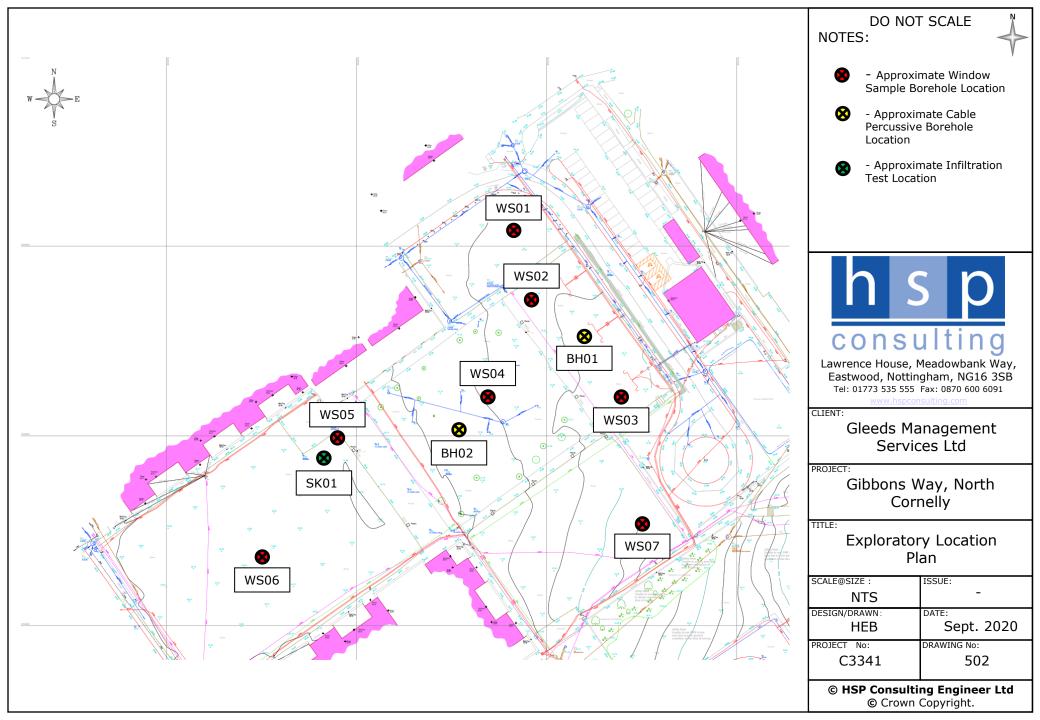
n s i	O				Do	roho		Borehole No
onsulti	na				DU	ienc	ole Log	BH02 Sheet 1 of
oject Name:	0	Vav. No		oject No.		Co-ords:	-	Hole Type
		-		341				CP Scale
cation:	Gibbons V	vay, No	orth Cornelly			Level:		1:50 Logged By
ent:	Gleeds Ma	anager	ment Services Ltd			Dates:	-	НВ
ell Water	-	1	In Situ Testing	Depth	Level	Legend	Stratum Description	
Strikes	Depth (m) 0.00 - 0.50	Type B	Results	(m) 0.15	(m)		MADE GROUND - Dark grey concre	
	0.00			0110			MADE GROUND - Orange and grey occasional black sandy gravel. Sand	' with
	0.50 - 1.00	В		0.50			coarse. Gravel is angular of concret Firm orangish brown slightly sandy	e.
	1.00		N=10 (2,3/3,2,2,3)				is fine to coarse.	
	1.00 - 2.00 1.00 - 2.00	B T						
	2.00		N=47	2.00				
	2.00 - 2.50	В	(9,11/9,9,14,15)	2.00			Very dense greyish brown clayey sa GRAVEL. Sand is fine to coarse. Gr	avel is
	2.00 2.00						angular of mixed lithologies. Low co	bble content.
	3.00		N=52 (10,14/52 for 265mm)				Becoming medium dense from 3.00m dep	th.
	3.00 - 4.00	В						
	4.00 4.00 - 4.50	В	N=29 (8,11/10,7,8,4)					
	4.00 - 4.50 4.50 - 4.80	Т Т		4.50				
	1.00 1.00			1.00			Extremely weak weathered reddish grey mottled MUDSTONE. Recover	ed as a
	5.00		N=50 (1,3/50 for 255mm)				slightly sandy gravelly clay. Sand is medium. Gravel is angular of mudst	one.
	5.20 - 5.30	Т	2001111)	5.40			End of borehole at 5.40 m	

								Borehole No	э.
	ρ				Bo	reho	ole Log	WS01	
onsul	ting					_	.	Sheet 1 of 1	
roject Nam	e: Gibbons V	Vay, No		oject No. 3341		Co-ords:	-	Hole Type WS	
ocation:	Gibbons V	Vay, No	orth Cornelly			Level:		Scale 1:50	
ient:	Gleeds Ma	anager	nent Services Ltd			Dates:	-	Logged By HEB	,
Vell Wate		s and	In Situ Testing	Depth	Level	Legend	Stratum Description		
Strike	Deptil (III)	Туре	Results	(m)	(m)	Legend	-		
	0.10 0.70 1.00 1.30 1.50 2.00 2.70	TJ TJ B D	N=8 (2,1/2,2,2,2) N=20 (2,4/4,5,5,6) 50 (8,9/50 for 195mm)	0.30 0.95 1.25 2.50 2.70			MADE GROUND - Brown sandy gra topsoil. Gravel is fine to coarse and to angular of mixed lithology, brick a MADE GROUND - Dark brown sand gravelly clay. Gravel is fine to mediu rounded to angular of mixed litholog gravel. MADE GROUND - Dark brown sand gravelly clay. Gravel is fine to mediu rounded to sub angular of mixed lith clinker. Firm to stiff brown slightly gravelly s Gravel is fine to coarse sub rounded angular of mixed lithology. Very dense slightly clayey sandy Gf (possible cobble). Gravel is fine to c angular of limestone. End of borehole at 2.70 m	sub rounded and concrete. dy slightly um and sub gy and brick dy slightly um and sub nology and andy CLAY. d to sub	1 2 3 4 5 6 7 8 8 9
								1	

h con	S sult	D ing				Во	reho	ole Log	Borehole N WS02 Sheet 1 of	2
Projec	t Name:	Gibbons V	Vay, N	orth ('ornally	roject No. 3341		Co-ords:	-	Hole Type WS	е
Locatio	on:	Gibbons V	Vay, N	orth Cornelly			Level:		Scale 1:50	
Client:		Gleeds Ma	anagei	ment Services Ltd			Dates:	-	Logged B HEB	y
Well	Water	Samples	s and	In Situ Testing	Depth	Level	Legend	Stratum Description		
	Strikes	Depth (m)	Туре	Results	(m)	(m)		MADE GROUND - Brown sandy gra		
		0.45 - 0.55 1.00 1.50 2.50	В	N=15 (4,3/4,4,3,4) N=19 (13,10/6,3,5,5)	2.30			to angular of mixed lithology, brick a MADE GROUND - Brown very sanc gravelly clay. Gravel is fine to mediu angular to angular of brick, concrete With concrete obstruction at 1.00m depth No recovery from 1.00m to 2.30m depth. Firm brown and orange mottled very slightly gravelly CLAY. Sand is fine to Gravel is sub angular to sub rounded	ly very im and sub and mortar. ∕ sandy o coarse.	
		3.50		N=42 (7,5/10,10,12,10)	2.90 3.50 3.80 4.00			Ithologies. No recovery. With a limestone cobble at 2.90m depth. Stiff brown orange grey very sandy is fine to coarse. Dense brown slightly clayey SAND (possible cobble). Sand is fine to co is angular of limestone. End of borehole at 4.00 m	CLAY. Sand	- 3 - 5
Remai No gro		er encountere	ed duri	ng the drilling.					AGS	5

									Borehole N	o.
	S					Bo	reho	ole Log	WS03	
CON	sult	ing			Project No.				Sheet 1 of	
Projec	t Name:	Gibbons V	Vay, No	orth Cornelly	C3341		Co-ords:	-	Hole Type WS	'
Locati	on:	Gibbons V	Vay, No	orth Cornelly			Level:		Scale	
									1:50 Logged By	
Client:				ment Services Lto	k	1	Dates:	-	LAB	
Well	Water Strikes	Samples Depth (m)	s and Type	In Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description		
Rema		0.35 - 0.45	TJ	N=16 (1,2/3,3,5,	0.20 0.35 5) 1.50			MADE GROUND - Brown sandy gra topsoil. Gravel is fine to coarse and to angular of mixed lithology, brick a MADE GROUND - Brown very sanc gravelly clay. Sand is fine to coarse sub angular to sub rounded of brick concrete. Firm to stiff brown orange very sanc gravelly CLAY. Sand is fine to medit sub rounded to sub angular of mixe End of borehole at 1.50 m	sub rounded ind concrete. ly very Gravel is and ly slightly im. Gravel is d lithology.	
	Januwal		sa aun	ng tro uning.					AGS	

	S sult	p				Bo	reho	ole Log	Borehole No WS04
	t Name:	0	Vay, No		roject No.		Co-ords:	-	Sheet 1 of 7 Hole Type
catio	on:	Gibbons V	Vay, No	orth Cornelly	3341		Level:		WS Scale
ient:		Gleeds Ma	anader	nent Services Ltd			Dates:		1:50 Logged By
				In Situ Testing	Danth	Laval			LAB
Vell	Water Strikes	Depth (m)	Туре	Results	Depth (m)	Level (m)	Legend	Stratum Description	
					0.04			MADE GROUND - Weathered conc MADE GROUND - Sub base mater	rete asphalt.
		0.45 - 0.55	ТJ		0.40			MADE GROUND - Brown very sand	
					0.70			gravelly clay. Sand is fine to coarse sub angular to sub rounded of brick and organic materials.	, concrete
S		1.00 1.00	В	N=10 (3,2/2,2,2,4)				Firm brown orange very sandy sligh CLAY. Sand is fine to coarse. Grave	tly gravelly
								angular to sub rounded of mixed lith	
					1.80			Very dense brown slightly clayey S/	ND and
		2.00		N=47 (4,11/15,10,10,12)	2.00			GRAVEL (possible cobble). Sand is coarse. Gravel is angular of limesto	fine to
				(,,,.,.,.,,,,,,,,				End of borehole at 2.00 m	


) n	S sult	р ing				Bo	reho	ole Log	Borehole N WS05 Sheet 1 of
jec	t Name:	Gibbons V	Vay, No		roject No. 3341		Co-ords:	-	Hole Type WS
atio	on:	Gibbons V	Vay, No	orth Cornelly			Level:		Scale 1:50
ent:		Gleeds Ma	anagen	nent Services Ltd			Dates:	-	Logged By LAB
ell	Water	Samples	s and I	n Situ Testing	Depth	Level	Legend	Stratum Description	LAD
	Strikes	Depth (m)	Туре	Results	(m)	(m)		MADE GROUND - Grass overlying I	arown condu
		0.35 - 0.45	ТJ		0.25			gravelly clayey topsoil. Gravel is fine and sub rounded to angular of mixed	to coarse
Ø		0.70 - 0.80	в		0.70			brick and concrete. MADE GROUND - Brown orange ve	ry sandy
		1.00		N=7 (0,0/0,2,2,3)				slightly gravelly clay. Sand is fine to Gravel is angular to sub rounded of	stone, brick,
								coal and concrete asphalt fragments Soft to firm brown orange very sand Sand is fine to coarse.	y CLAY.
								Sand is line to coarse.	
		2.00		N=40					
				(4,6/11,12,10,7)	2.20			Medium dense to dense brown sligh	tly clayey
								SAND and GRAVEL (possible cobbl fine to coarse. Gravel is angular of li	
		3.00		N=50	3.00			End of borehole at 3.00 m	
				(6,7/11,16,12,11)					
	'ks								

h	S sult	p ing				Bo	reho	ole Log	Borehole N WS06 Sheet 1 of	6
	t Name:		Vay, No		oject No. 3341		Co-ords:	-	Hole Type WS	
ocati	on:	Gibbons V	Vay, No	orth Cornelly	5541		Level:		Scale	
Client:		Gleeds Ma	anader	nent Services Ltd			Dates:	-	1:50 Logged B	8y
	Water			In Situ Testing	Depth	Level			LAB	
Well	Strikes	Depth (m)	Туре	Results	(m)	(m)	Legend	Stratum Description		
		0.30 - 0.40 1.00 1.20 2.00	ТJ	N=8 (2,2/2,1,3,2) N=25 (2,2/3,4,8,10)	0.25			MADE GROUND - Grass overlying gravelly clayey topsoil. Gravel is fin and sub rounded to angular of mixe brick and concrete. Soft becoming stiff brown orange v CLAY. Sand is fine to medium. Gra rounded to sub angular of mixed lit	e to coarse ed lithology, ery sandy vel is sub	1
					2.50			Medium dense to dense brown slig SAND and GRAVEL (possible cobt	ole). Sand is	_
		3.00		N=50 (9,11/50 for 275mm)	3.00			fine to coarse. Gravel is angular of End of borehole at 3.00 m		3
										4
										6
										7
										8
										9
										10
ema oreh		inated at 3.00)m beg	l due to refusal. No	groundwa	ter encoui	ntered durir	ng the drilling.	AGS	

n c	n				_			Borehole No
					Bo	reho	ole Log	WS07
onsu			Pi	oject No.				Sheet 1 of 2 Hole Type
oject Nan	ne: Gibbons	Way, No		3341		Co-ords:	-	WS Scale
ocation:	Gibbons	Way, No	orth Cornelly			Level:		1:50
lient:	Gleeds M	lanager	ment Services Ltd			Dates:	-	Logged By LAB
Vell Wate			In Situ Testing	Depth	Level	Legend	Stratum Description	
Strike	es Depth (m)	Туре	Results	(m)	(m)		MADE GROUND - Grass overlying	brown sandy
	0.30 - 0.40	ТJ		0.25			gravelly clayey topsoil. Gravel is fine and sub rounded to angular of mixe	e to coarse
	0.60 - 0.70	TJ					brick and concrete. Firm to stiff brown orange very sand gravelly CLAY. Sand is fine to mediu	ly very
- • •	1.00		N=13 (2,3/3,4,3,3)				sub rounded to sub angular of mixe	d lithology.
						· · · · · · · · · · · · · · · · · · ·		
	2.00		N=15 (3,3/4,4,4,3)					
	3.00		N=27 (3,4/8,7,6,6)			· · · · · · · · · · · · · · · · · · ·		
· · ·								
				3.90 4.00			Very dense brown slightly clayey SA GRAVEL (possible cobble). Sand is	AND and
							coarse. Gravel is angular of limesto End of borehole at 4.00 m	ne.
morke								
marks groundw	vater encounte	red duri	ng the drilling.					
								AGS

Appendix III

Appendix IV

LABORATORY REPORT

4043

Contract Number: PSL20/4513

Report Date: 18 September 2020

- Client's Reference: C3341
- Client Name: HSP Consulting Lawrence House 4 Meadowbank Way Eastwood Nottingham NG16 3SB

For the attention of: Hallam Brown

Contract Title:	Gibbons Way
Date Received:	28/8/2020
Date Commenced:	28/8/2020
Date Completed:	18/9/2020

Notes: Opinions and Interpretations are outside the UKAS Accreditation

A copy of the Laboratory Schedule of accredited tests as issued by UKAS is attached to this report. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced other than in full, without the prior written approval of the laboratory.

Checked and Approved Signatories:

R Gunson (Director) A Watkins (Director) R Berriman (Quality Manager)


EKT

L Knight (Senior Technician) S Eyre (Senior Technician) S Royle (Laboratory Manager)

5 – 7 Hexthorpe Road, Hexthorpe, Doncaster DN4 0AR tel: +44 (0)844 815 6641 fax: +44 (0)844 815 6642 e-mail: rgunson@prosoils.co.uk awatkins@prosoils.co.uk Page 1 of

SUMMARY OF LABORATORY SOIL DESCRIPTIONS

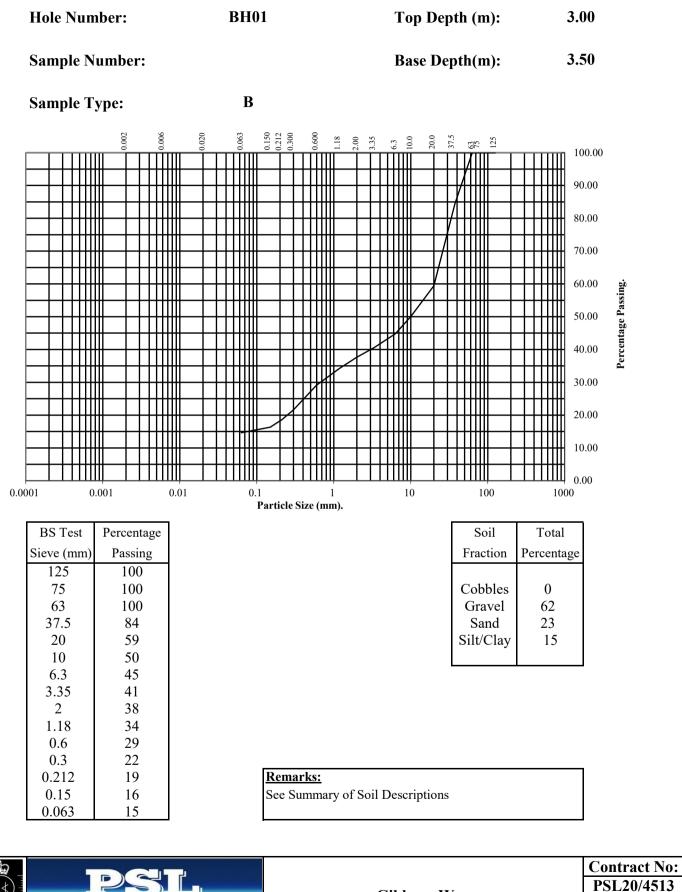
Hole Number	Sample Number	Sample Type	Top Depth m	Base Depth m	Description of Sample
BH01		В	3.00	3.50	Brown very sandy slightly clayey silty GRAVEL.
BH02		В	1.00	2.00	Brown very gravelly very sandy CLAY.

SUMMARY OF SOIL CLASSIFICATION TESTS

(BS1377 : PART 2 : 1990)

Hole Number	Sample Number	Sample Type	Top Depth	Base Depth	Moisture Content %	Linear Shrinkage %	Particle Density Mg/m ³	Liquid Limit %	Plastic Limit %	Plasticity Index %	Passing .425mm %	Remarks
			m	m	Clause 3.2	Clause 6.5	Clause 8.2	Clause 4.3/4	Clause 5.3	Clause 5.4		
BH01		В	3.00	3.50	7.5							
BH02		В	1.00	2.00	13							

SYMBOLS : NP : Non Plastic

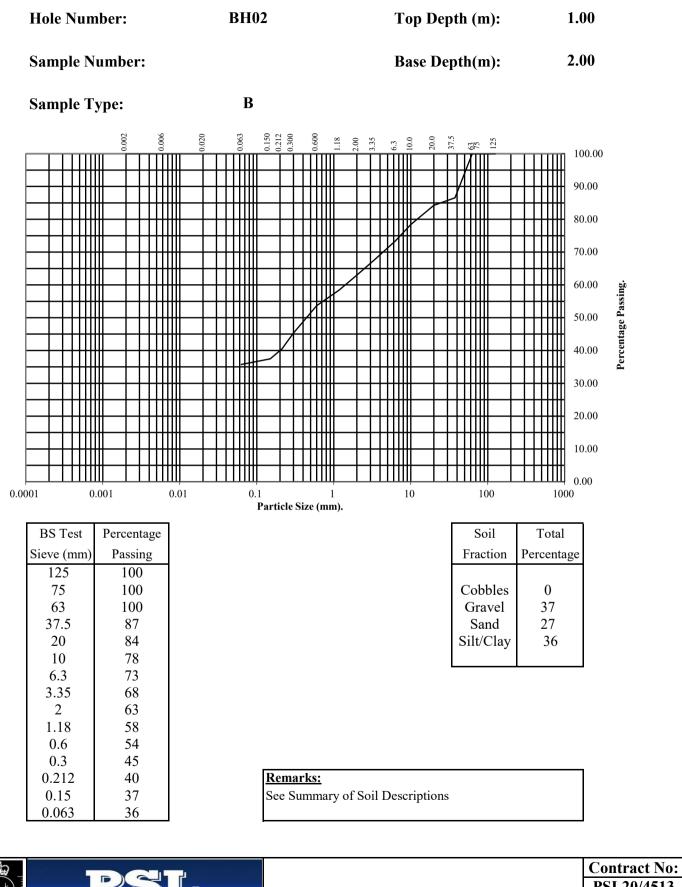

* : Liquid Limit and Plastic Limit Wet Sieved.

			Contract No:
		Gibbons Way	PSL20/4513
		U U	Client Ref:
4043	Professional Soils Laboratory		C3341

PARTICLE SIZE DISTRIBUTION TEST

BS1377 : Part 2 : 1990

Wet Sieve, Clause 9.2

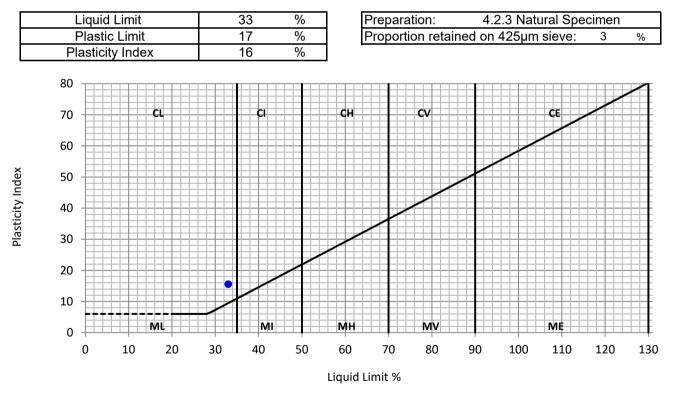


C3341

PARTICLE SIZE DISTRIBUTION TEST

BS1377 : Part 2 : 1990

Wet Sieve, Clause 9.2


PSL20/4513 **Gibbons Way Client Ref:** C3341

	IESIRE	PORT		
	Determination Of	Water Conter	nt	
	ISO 17892-	-1: 2014		
Project No: D20	266	Client:	HSP Consu	ulting
Project Name:GibbATS Sample No:2124	oons Way 11	Address	Lawrence H Meadowba Nottingham NG16 3SB	nk Way, ւ,
Site Ref / Hole ID:	WS2	Depth (m):		2.50
Sample No:		Sample Typ	be:	Bulk
Sampling Certificate Received:	Νο	Material De	scription:	Brown slightly gravelly CLAY
Location in Works:	Unknown	Material So	urce:	N/A
Date Sampled:	11 August 2020	Material Su	pplier:	N/A
Sampled By:	HSP	Specificatio	on:	
Date Received:	12 August 2020	Date Tested	1:	17 August 2020
	Moisture Content (%)		20.5	
	Moisture Content (%)		20.5	
Remarks:	Moisture Content (%)		20.5	
Remarks:	Moisture Content (%) Moisture Content (%)	Approver	20.5	Fig
	Apex Testing Solutions	Approver L.Davi	Date	18/08/2020 MC

TEST REPORT LIQUID LIMIT, PLASTIC LIMIT & PLASTICITY INDEX BS EN ISO 17892 12:2018 Clausos 5 3/5 5/6 5

	BS EN ISO 178	392-12:2018	3 Clause	es 5.3/5.5/6.5
Project No:	D20266	Client:	HSP Consu	Iting
Project Name:	Gibbons Way	Address	Lawrence H	
ATS Sample No:	21241		Meadowban Nottingham, NG16 3SB	-
Site Ref / Hole ID:	WS2	Depth (m):		2.50
Sample No:		Sample Ty	pe:	Bulk
Sampling Certificate Received:	No	Material De	escription:	Brown slightly gravelly CLAY
Location in Works:	Unknown	Material So	ource:	N/A
Date Sampled:	11 August 2020	Material Su	upplier:	N/A
Sampled By:	HSP	Specificati	on:	
Date Received:	12 August 2020	Date Teste	d:	17 August 2020

Test Results

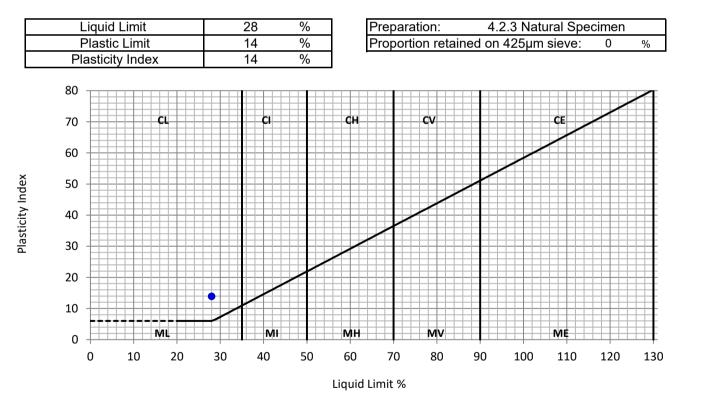
Remarks:

12:2018:E

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ Tel: 01656 746762 Fax: 01656 749096

Approver


L.Da√is Date L Davis, Quality Manager

	IESIK	EPORT			
	Determination O	of Water Conte	nt		
	ISO 1789	2-1: 2014			
Project No: D202	266	Client:	HSP Cons	ulting	
Project Name:GibbATS Sample No:2124	ons Way 2	Address	Lawrence Meadowba Nottinghan NG16 3SB	ink Way, n,	
Site Ref / Hole ID:	WS4	Depth (m):		1.00	
Sample No:		Sample Ty	pe:	Bulk	
Sampling Certificate Received:	No	Material Do	escription:	Brown CLAY	,
Location in Works:	Unknown	Material So	ource:	N/A	
Date Sampled:	11 August 2020	Material Su	upplier:	N/A	
Sampled By:	HSP	Specificati	on:		
Date Received:	12 August 2020	Date Teste	d:	17 August 20	020
	Moisture Content (%)		17.7		
	Moisture Content (%)		17.7		
Remarks:	Moisture Content (%)		17.7		
Remarks:	Apex Testing Solutions	Approver	Date		Fig
	Apex Testing Solutions		Date	18/08/2020	Fig

TEST REPORT LIQUID LIMIT, PLASTIC LIMIT & PLASTICITY INDEX BS EN ISO 17892-12:2018 Clausos 5 3/5 5/6 5

	BS EN ISO 178	392-12:2018 Cla	auses 5.3/5.5/6.5
Project No:	D20266	Client: HSP C	Consulting
Project Name:	Gibbons Way		nce House,
ATS Sample No:	21242	Meado Notting NG16	
Site Ref / Hole ID:	WS4	Depth (m):	1.00
Sample No:		Sample Type:	Bulk
Sampling Certificate Received:	No	Material Descriptio	on: Brown CLAY
Location in Works:	Unknown	Material Source:	N/A
Date Sampled:	11 August 2020	Material Supplier:	N/A
Sampled By:	HSP	Specification:	
Date Received:	12 August 2020	Date Tested:	17 August 2020

Test Results

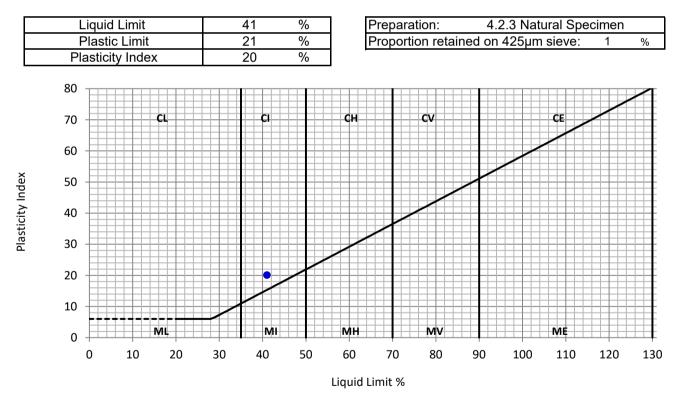
Remarks:

12:2018:E

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ Tel: 01656 746762 Fax: 01656 749096

Approver


	Date
L.Davís	18/08/2020
L Davis, Quality Ma	nager

		EPORT			
	Determination O	f Water Content	:		
	ISO 17892	2-1: 2014			
Project No: D202	266	Client:	HSP Consu	ılting	
Project Name:GibbATS Sample No:2124	ons Way I3		Lawrence F Meadowbar Nottingham NG16 3SB	nk Way,	
Site Ref / Hole ID:	WS5	Depth (m):		0.70 - 0	0.80
Sample No:		Sample Type):	Bulk	
Sampling Certificate Received:	Νο	Material Des	cription:	Greyish browr gravelly CLAY	
Location in Works:	Unknown	Material Sou	rce:	N/A	
Date Sampled:	11 August 2020	Material Sup	plier:	N/A	
Sampled By:	HSP	Specificatior	ו:		
Date Received:	12 August 2020	Date Tested:		17 August 202	20
	Moisture Content (%)	24	4.5		
	Moisture Content (%)	24	4.5		
Remarks:	Moisture Content (%)	24	4.5		
Remarks:	Apex Testing Solutions	Approver	Date	F	≂ig
			Date	F	-ig MC

TEST REPORT LIQUID LIMIT, PLASTIC LIMIT & PLASTICITY INDEX BS EN ISO 17892-12:2018 Clauses 5 3/5 5/6 5

	В	S EN ISO 17892-12:2018	Clause	s 5.3/5.5/6.5
Project No:	D20266	Client:	HSP Consu	ting
Project Name:	Gibbons Way	Address	Lawrence H	
ATS Sample No:	21243		Meadowban Nottingham, NG16 3SB	-
Site Ref / Hole ID:	WS5	Depth (m):		0.70 - 0.80
Sample No:		Sample Typ	be:	Bulk
Sampling Certificate Received:	No	Material De	escription:	Greyish brown slightly gravelly CLAY
Location in Works:	Unknown	Material So	ource:	N/A
Date Sampled:	11 August 2020	Material Su	pplier:	N/A
Sampled By:	HSP	Specificatio	on:	
Date Received:	12 August 2020	Date Teste	d:	17 August 2020

Test Results

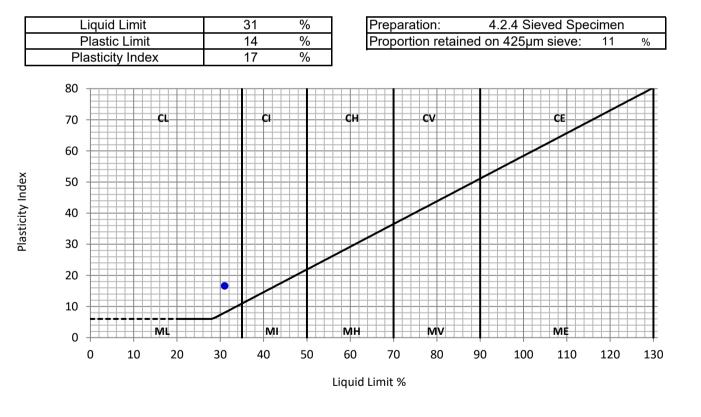
Remarks:

12:2018:E

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ Tel: 01656 746762 Fax: 01656 749096

Approver


L.Davis, Quality Manager

	IESIK	EPORT		
	Determination O	f Water Conter	nt	
	ISO 17892	2-1: 2014		
Project No: D202	266	Client:	HSP Cons	ulting
Project Name:GibbATS Sample No:2124	ons Way I4	Address	Lawrence I Meadowba Nottinghan NG16 3SB	nk Way, າ,
Site Ref / Hole ID:	WS6	Depth (m):		1.20
Sample No:		Sample Ty	oe:	Bulk
Sampling Certificate Received:	No	Material De	escription:	Brown slightly gravelly CLAY
Location in Works:	Unknown	Material Sc	ource:	N/A
Date Sampled:	11 August 2020	Material Su	pplier:	N/A
Sampled By:	HSP	Specification	on:	
Date Received:	12 August 2020	Date Teste	d:	18 August 2020
	Moisture Content (%)		22.3	
	Moisture Content (%)		22.3	
Remarks:	Moisture Content (%)		22.3	
Remarks:	Apex Testing Solutions	Approver	22.3	Fig
	Apex Testing Solutions	Approver	Date	

TEST REPORT LIQUID LIMIT, PLASTIC LIMIT & PLASTICITY INDEX BS EN ISO 17892-12:2018 Clauses 5 3/5 5/6 5

	BS EN ISO 1	7892-12:2018 C	lauses 5.3/5.5/6.5
Project No:	D20266	Client: HSP	Consulting
Project Name:	Gibbons Way		ence House,
ATS Sample No:	21244	Notti	dowbank Way, ngham, 6 3SB
Site Ref / Hole ID:	WS6	Depth (m):	1.20
Sample No:		Sample Type:	Bulk
Sampling Certificate Received:	No	Material Descrip	tion: Brown slightly gravelly CLAY
Location in Works:	Unknown	Material Source:	N/A
Date Sampled:	11 August 2020	Material Supplier	r: N/A
Sampled By:	HSP	Specification:	
Date Received:	12 August 2020	Date Tested:	17 August 2020

Test Results

Remarks:

12:2018:E

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ Tel: 01656 746762 Fax: 01656 749096

Approver

L.Davís Date

Appendix V

🔅 eurofins

Chemtest Ltd Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	20-21705-1		
Initial Date of Issue:	24-Aug-2020		
Client	HSP Consulting Engineers Limited		
Client Address:	Lawrence House Meadowbank Way Eastwood Nottinghamshire NG16 3SB		
Contact(s):	Linden Baker		
Project	C3341 Gibbons Way		
Quotation No.:		Date Received:	17-Aug-2020
Order No.:		Date Instructed:	17-Aug-2020
No. of Samples:	8		
Turnaround (Wkdays):	5	Results Due:	21-Aug-2020
Date Approved:	24-Aug-2020		
Approved By:			
Manney			

Details:

Glynn Harvey, Technical Manager

<u> Results - Soil</u>

Project: C3341 Gibbons Way

Client: HSP Consulting Engineers		Che	mtest J	oh No ·	20-21705	20-21705	20-21705	20-21705	20-21705	20-21705	20-21705	20-21705
Limited						-						
Quotation No.:	(st Sam	-	1049659	1049660	1049661	1049662	1049663	1049664	1049665	1049666
		Sa	ample Lo		WS2	WS2	WS3	WS4	WS5	WS6	WS7	WS7
	_			e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
	_	Det	Top De		0.20	0.45	0.35	0.45	0.35	0.30	0.30	0.60
		BO	tom De	,	0.30	0.55	0.45	0.55	0.45	0.40	0.40	0.70
			Date Sa	os Lab:	11-Aug-2020 COVENTRY	11-Aug-2020	11-Aug-2020 COVENTRY	11-Aug-2020 COVENTRY	11-Aug-2020 COVENTRY	11-Aug-2020	11-Aug-2020	11-Aug-2020 COVENTRY
Determinand	Accred.	SOP	Units		COVENTRY		COVENTRY	COVENTRY	COVENTRY			COVENTRY
ACM Type		2192	Units	N/A	-		-	-	-			-
	-				No Asbestos		No Asbestos	No Asbestos	No Asbestos			No Asbestos
Asbestos Identification	U	2192	%	0.001	Detected		Detected	Detected	Detected			Detected
ACM Detection Stage	U	2192		N/A	-		-	-	-			-
Moisture	N	2030	%	0.020	8.5	13	12	17	15	48	16	17
pH	U	2010	,,,	4.0	8.1	8.4	8.3	7.8	7.8	7.7	8.2	8.4
Boron (Hot Water Soluble)	U	2120	mg/kg	0.40	0.51	0.48	0.47	0.64	0.46	0.75	0.58	0.56
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010	0.011	< 0.010	< 0.010	0.010	< 0.010	0.22	< 0.010	< 0.010
Total Sulphur	U	2175	%	0.010		0.021	0.023	0.029				
Sulphur (Elemental)	U	2180	mg/kg	1.0	1.8	< 1.0	< 1.0	< 1.0	< 1.0	1.2	< 1.0	1.4
Cyanide (Free)	U	2300	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Cyanide (Total)	U	2300	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Sulphide (Easily Liberatable)	N	2325	mg/kg	0.50	3.1	1.1	1.4	0.88	1.1	8.1	1.0	2.2
Sulphate (Acid Soluble)	U	2430	%	0.010		0.040	0.048	0.058				
Arsenic	U	2450	mg/kg	1.0	20	14	19	17	15	20	19	18
Cadmium	U	2450	mg/kg	0.10	0.48	0.32	0.47	0.54	0.34	0.46	0.46	0.42
Chromium	U	2450	mg/kg	1.0	25	19	26	23	22	36	25	23
Copper	U	2450	mg/kg	0.50	20	18	26	23	19	24	24	22
Mercury	U	2450	mg/kg	0.10	0.11	< 0.10	0.17	0.13	0.12	0.13	0.12	< 0.10
Nickel	U	2450	mg/kg	0.50	19	19	21	20	20	25	20	20
Lead	U	2450	mg/kg	0.50	46	42	54	49	42	77	51	46
Selenium	U	2450	mg/kg	0.20	< 0.20	0.45	0.58	0.62	0.56	0.64	0.57	0.68
Zinc	U	2450	mg/kg	0.50	83	98	130	120	99	110	110	110
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Organic Matter	U	2625	%	0.40	2.4		2.1		1.9		2.9	
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

<u> Results - Soil</u>

Project: C3341 Gibbons Way

Client: HSP Consulting Engineers												
Limited		Che	mtest J	ob No.:	20-21705	20-21705	20-21705	20-21705	20-21705	20-21705	20-21705	20-21705
Quotation No.:	(Chemte	est Sam	ple ID.:	1049659	1049660	1049661	1049662	1049663	1049664	1049665	1049666
		Sa	ample L	ocation:	WS2	WS2	WS3	WS4	WS5	WS6	WS7	WS7
			Samp	e Type:	SOIL							
			Top De		0.20	0.45	0.35	0.45	0.35	0.30	0.30	0.60
		Bo	ttom De	pth (m):	0.30	0.55	0.45	0.55	0.45	0.40	0.40	0.70
			Date Sa	ampled:	11-Aug-2020							
			Asbest	tos Lab:	COVENTRY		COVENTRY	COVENTRY	COVENTRY			COVENTRY
Determinand	Accred.	SOP	Units	LOD								
Aromatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Naphthalene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthylene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Anthracene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluoranthene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Pyrene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]anthracene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Chrysene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[b]fluoranthene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[k]fluoranthene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]pyrene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene	U	2700	mg/kg	0.10	< 0.10	0.49	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Of 16 PAH's	U	2700	mg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Benzene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Methyl Tert-Butyl Ether	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Phenols	U	2920	mg/kg	0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30

Test Methods

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	рН	pH Meter
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2175	Total Sulphur in Soils	Total Sulphur	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2180	Sulphur (Elemental) in Soils by HPLC	Sulphur	Dichloromethane extraction / HPLC with UV detection
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2325	Sulphide in Soils	Sulphide	Steam distillation with sulphuric acid / analysis by 'Aquakem 600' Discrete Analyser, using N,N–dimethyl-p-phenylenediamine.
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2680	TPH A/A Split	Aliphatics: >C5–C6, >C6–C8,>C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35–C44Aromatics: >C5–C7, >C7–C8, >C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21–C35, >C35–C44	Dichloromethane extraction / GCxGC FID detection
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.

Report Information

Key

1.09	
U	UKAS accredited
Μ	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
	Comments or interpretations are beyond the scope of UKAS accreditation
	The results relate only to the items tested
	Uncertainty of measurement for the determinands tested are available upon request
	None of the results in this report have been recovery corrected
	All results are expressed on a dry weight basis
	The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

🔅 eurofins

Chemtest Ltd Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	20-24676-1		
Initial Date of Issue:	18-Sep-2020		
Client	HSP Consulting Engineers Limited		
Client Address:	Lawrence House Meadowbank Way Eastwood Nottinghamshire NG16 3SB		
Contact(s):	Hallam Brown		
Project	C3341 Gibbons Way		
Quotation No.:		Date Received:	15-Sep-2020
Order No.:		Date Instructed:	15-Sep-2020
No. of Samples:	2		
Turnaround (Wkdays):	5	Results Due:	21-Sep-2020
Date Approved:	18-Sep-2020		
Approved By:			
Manney			
Detelle			

Details:

Glynn Harvey, Technical Manager

Project: C3341 Gibbons Way

Client: HSP Consulting Engineers Limited		Che	mtest Jo	ob No.:	20-24676	20-24676
Quotation No.:	(Chemtest Sample ID.:			1064344	1064345
		Sa	ample Lo	ocation:	BH01	BH02
			Sampl	e Type:	SOIL	SOIL
			Top De	oth (m):	2.00	3.00
		Date Sampled:		23-Jul-2020	23-Jul-2020	
Determinand	Accred.	SOP	Units	LOD		
Moisture	Ν	2030	%	0.020	9.2	8.4
рН	U	2010		4.0	[B] 9.3	[B] 8.7
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010	[B] 0.11	[B] 0.015
Total Sulphur	U	2175	%	0.010	[B] 0.044	[B] 0.024
Sulphate (Acid Soluble)	U	2430	%	0.010	[B] 0.058	[B] < 0.010

Deviations

In accordance with UKAS Policy on Deviating Samples TPS 63. Chemtest have a procedure to ensure 'upon receipt of each sample a competent laboratory shall assess whether the sample is suitable with regard to the requested test(s)'. This policy and the respective holding times applied, can be supplied upon request. The reason a sample is declared as deviating is detailed below. Where applicable the analysis remains UKAS/MCERTs accredited but the results may be compromised.

Sample:	Sample Ref:	Sample ID:	Sample Location:	Sampled Date:	Deviation Code(s):	Containers Received:
1064344			BH01	23-Jul-2020	В	Plastic Tub 500g
1064345			BH02	23-Jul-2020	В	Plastic Tub 500g

Test Methods

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	рН	pH Meter
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2175	Total Sulphur in Soils	Total Sulphur	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.

Report Information

Key

1.09	
U	UKAS accredited
Μ	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
	Comments or interpretations are beyond the scope of UKAS accreditation
	The results relate only to the items tested
	Uncertainty of measurement for the determinands tested are available upon request
	None of the results in this report have been recovery corrected
	All results are expressed on a dry weight basis
	The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

🔅 eurofins

Chemtest Ltd Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	20-24937-1		
Initial Date of Issue:	17-Sep-2020		
Client	HSP Consulting Engineers Limited		
Client Address:	Lawrence House Meadowbank Way Eastwood Nottinghamshire NG16 3SB		
Contact(s):	Hallam Brown		
Project	C3341 Gibbons Way		
Quotation No.:		Date Received:	17-Sep-2020
Order No.:	SC13440	Date Instructed:	17-Sep-2020
No. of Samples:	1		
Turnaround (Wkdays):	5	Results Due:	23-Sep-2020
Date Approved:	17-Sep-2020		
Approved By:			
Mysman			

Details:

Glynn Harvey, Technical Manager

Project: C3341 Gibbons Way

Client: HSP Consulting Engineers Limited		Chem	20-24937		
Quotation No.:	C	hemtes	1065904		
		Sar	WS07		
			WATER		
		[Date Sar	npled:	15-Sep-2020
Determinand	Accred.	Accred. SOP Units LOD			
рН	U	U 1010 N/A		7.1	
Sulphate	U	12			

Test Methods

SOP	Title	Parameters included	Method summary			
1010	pH Value of Waters	рН	pH Meter			
1220	Anions, Alkalinity & Ammonium	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.			

Report Information

Key
,

U	UKAS accredited
Μ	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
	Comments or interpretations are beyond the scope of UKAS accreditation
	The results relate only to the items tested
	Uncertainty of measurement for the determinands tested are available upon request
	None of the results in this report have been recovery corrected
	All results are expressed on a dry weight basis
	The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

Appendix VI

Waste Classification Report

Job name					
C3341 Gibbons Way					
Description/Commo	ents				
Project					
C3341 Gibbons Way					
Site					
Gibbons Way					
Related Documents	5				
# Name		Description			
1 HWOL_20-21705	-20200824 102356.hwol	.hwol file used to create the Job			
Waste Stream Tem	plate				
Example waste stream ter	nplate for contaminated soils				
Classified by					
Name: Howard Daley Date: 11 Sep 2020 09:41 GMT Telephone: 01773 535555	Company: HSP Consulting Engineers Limite Lawrence House 4 Meadowbank V Eastwood 4 Meadowbank Way, Eastwood Nottingham NG16 3SB	Vay Course E Hazardous Waste Classification 1	Date 11 Feb 2020 12 Feb 2020		

Report

Created by: Howard Daley Created date: 11 Sep 2020 09:41 GMT

Job summary

#	Sample Name	Depth [m]	Classification Result	Hazard properties	Page
1	WS2 0.20m	0.20-0.30	Non Hazardous		3
2	WS2 0.45m	0.45-0.55	Non Hazardous		6
3	WS3 0.35m	0.35-0.45	Non Hazardous		9
4	WS4 0.45m	0.45-0.55	Non Hazardous		12
5	WS5 0.35m	0.35-0.45	Non Hazardous		15
6	WS6 0.30m	0.30-0.40	Non Hazardous		18
7	WS7 0.30m	0.30-0.40	Non Hazardous		21
8	WS7 0.60m	0.60-0.70	Non Hazardous		24

Appendices	Page
Appendix A: Classifier defined and non CLP determinands	27

HazWasteOnline[™] Report created by Howard Daley on 11 Sep 2020

Appendices	Page
Appendix B: Rationale for selection of metal species	28
Appendix C: Version	29

Classification of sample: WS2 0.20m

Sample details

Chapter:	17: Construction and Demolition Wastes (including excavated soil
	from contaminated sites)
Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
	03)

Hazard properties

None identified

Determinands

Moisture content: 8.5% Wet Weight Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	d data	Conv. Factor	Compound cor	nc.	Classification value	MC Applied	Conc. Not Used
1	4	arsenic { arsenic tri 033-003-00-0	<mark>oxide</mark> } 215-481-4	1327-53-3		20	mg/kg	1.32	24.162 m	ng/kg	0.00242 %	~	
2	4	boron { diboron trio		1303-86-2	_	0.51	mg/kg	3.22	1.503 n	ng/kg	0.00015 %	\checkmark	
3	4	cadmium {		1306-19-0		0.48	mg/kg	1.142	0.502 n	ng/kg	0.0000502 %	\checkmark	
4	4	chromium in chrom oxide (worst case)	· · ·	{ • chromium(III)		25	mg/kg	1.462	33.433 n	ng/kg	0.00334 %	~	
5	4	chromium in chrom oxide } 024-001-00-0	ium(VI) compounds	s { chromium(VI)		<0.5	mg/kg	1.923	<0.962 n	ng/kg	<0.0000962 %		<lod< th=""></lod<>
6	~	copper { dicopper c				20	mg/kg	1.126	20.604 m	ng/kg	0.00206 %	~	
7	4	lead { <mark>lead chromat</mark> 082-004-00-2	<mark>te</mark> } 231-846-0	7758-97-6	1	46	mg/kg	1.56	65.653 n	ng/kg	0.00421 %	\checkmark	
8	*	mercury { mercury 080-010-00-X	<mark>dichloride</mark> } 231-299-8	7487-94-7	_	0.11	mg/kg	1.353	0.136 m	ng/kg	0.0000136 %	\checkmark	
9	4		<mark>nate</mark> } 238-766-5	14721-18-7	_	19	mg/kg	2.976	51.742 n	ng/kg	0.00517 %	\checkmark	
10	4	selenium { seleniur cadmium sulphose in this Annex 034-002-00-8			_	<0.2	mg/kg	2.554	<0.511 n	ng/kg	<0.0000511 %		<lod< th=""></lod<>
11	~	zinc { zinc chromat	<mark>e</mark> } 236-878-9	13530-65-9	_	83	mg/kg	2.774	210.683 m	ng/kg	0.0211 %	~	
12	۵	TPH (C6 to C40) petroleum group			<10	mg/kg		<10 n	ng/kg	<0.001 %		<lod< th=""></lod<>	
13		tert-butyl methyl eth 2-methoxy-2-methy	Ipropane	4624.04.4		<0.001	mg/kg		<0.001 m	ng/kg	<0.0000001 %		<lod< th=""></lod<>
		603-181-00-X	216-653-1	1634-04-4									(

HazWasteOnline[™] Report created by Howard Daley on 11 Sep 2020

#			Determinand		CLP Note	User entered	l data	Conv. Factor	Compound conc.		Classification value	MC Applied	Conc. Not Used
		CLP index number	EC Number	CAS Number	СЪ							AC /	
14		benzene				-0.001			-0.001	malka	-0.000001.8/	_	<lod< td=""></lod<>
14		601-020-00-8	200-753-7	71-43-2		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
15		toluene 601-021-00-3	203-625-9	108-88-3		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		ethylbenzene											
16	-	,	202-849-4	100-41-4		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		xylene										Ì	
17			202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.002	mg/kg		<0.002	mg/kg	<0.0000002 %		<lod< td=""></lod<>
18	4	cyanides { salts of exception of complete ferricyanides and magnetic specified elsewhere specified elsewhe	ex cyanides such as hercuric oxycyanide	s ferrocyanides,		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
		006-007-00-5											
19	۲	рН		PH		8.1	pН		8.1	рН	8.1 pH		
20		naphthalene		1		<0.1	mg/kg		<0.1	ma/ka	<0.00001 %		<lod< td=""></lod<>
20		601-052-00-2	202-049-5	91-20-3		<0.1	ing/kg		<0.1	mg/ng	<0.00001 //		~LOD
	Θ	acenaphthylene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			205-917-1	208-96-8									
22		acenaphthene	201-469-6	83-32-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		fluorene	201-409-0	03-32-9	-								
23	8		201-695-5	86-73-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	0		henanthrene										
24		•	201-581-5	85-01-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
25	۲	anthracene		120-12-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
26	8	fluoranthene	205-912-4	206-44-0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
27		pyrene										\vdash	
			204-927-3	129-00-0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
28		benzo[a]anthracene 501-033-00-9 200-280-6 56-55-3				<0.1	mg/kg		-0.1	ma/ka	<0.00001 %	\square	<lod< td=""></lod<>
									<0.1	шу/ку	<0.00001 %		<lod< td=""></lod<>
29		chrysene				<0.1	mg/kg		<0.1	ma/ka	<0.00001 %		<lod< td=""></lod<>
23		601-048-00-0	205-923-4	218-01-9									
30		benzo[b]fluoranther 601-034-00-4	ne 205-911-9	205-99-2		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
31		benzo[k]fluoranthen		1		<0.1	malka		-0.1		<0.00001 %	H	
31		01-036-00-5 205-916-6 207-08-9				<0.1	mg/kg		<0.1	тід/кд	<0.00001 %		<lod< td=""></lod<>
32		benzo[a]pyrene; benzo[def]chrysene 601-032-00-3 200-028-5 50-32-8				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	6	indeno[123-cd]pyrene			+							\vdash	
33	۲	205-893-2 193-39-5			$\left \right $	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
34		dibenz[a,h]anthrace				6.4			<u> </u>		0.00001.0/	H	
		501-041-00-2 200-181-8 53-70-3				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
35		benzo[ghi]perylene				<0.1	mg/kg		<01	ma/ka	<0.00001 %	Ħ	<lod< td=""></lod<>
		205-883-8 191-24-2				<0.1	ту/кд		<0.1	тg/кg	<0.00001 %		<lod< td=""></lod<>
36	4	sulfur {	231-722-6	7704-34-9		1.8	mg/kg		1.647	mg/kg	0.000165 %	\checkmark	
		-		ī						Total:	0.0401 %	† †	

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

Classification of sample: WS2 0.45m

Non Hazardous Waste Classified as 17 05 04 in the List of Waste	
---	--

Sample details

Sample Name: WS2 0.45m	LoW Code:	17: Construction and Domalition Waster (including everyated coil
Sample Depth:		17: Construction and Demolition Wastes (including excavated soil from contaminated sites)
0.45-0.55 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
13% (wet weight correction)		

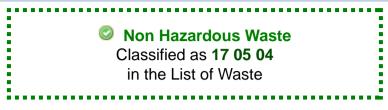
Hazard properties

None identified

Determinands

Moisture content: 13% Wet Weight Moisture Correction applied (MC)

#		Determinand CLP index number EC Number CAS Number	CLP Note	User entered	data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	-	arsenic { arsenic trioxide } 033-003-00-0 215-481-4 1327-53-3		14	mg/kg	1.32	16.082 mg/kg	0.00161 %	\checkmark	
2	4	boron { diboron trioxide; boric oxide } 005-008-00-8 215-125-8 1303-86-2		0.48	mg/kg	3.22	1.345 mg/kg	0.000134 %	\checkmark	
3	-	cadmium { cadmium oxide } 048-002-00-0 215-146-2 1306-19-0		0.32	mg/kg	1.142	0.318 mg/kg	0.0000318 %	\checkmark	
4	4	chromium in chromium(III) compounds { chromium(III) oxide (worst case) } 215-160-9 1308-38-9		19	mg/kg	1.462	24.16 mg/kg	0.00242 %	~	
5	4	chromium in chromium(VI) compounds { chromium(VI) oxide } 024-001-00-0 215-607-8 1333-82-0		<0.5	mg/kg	1.923	<0.962 mg/kg	<0.0000962 %		<lod< td=""></lod<>
6	4	copper { dicopper oxide; copper (I) oxide } 029-002-00-X 215-270-7 1317-39-1		18	mg/kg	1.126	17.631 mg/kg	0.00176 %	~	
7	~	lead { lead chromate } 082-004-00-2 231-846-0 7758-97-6	1	42	mg/kg	1.56	56.996 mg/kg	0.00365 %	~	
8		mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7		<0.1	mg/kg	1.353	<0.135 mg/kg	<0.0000135 %		<lod< td=""></lod<>
9	-	nickel { nickel chromate } 028-035-00-7 238-766-5 14721-18-7		19	mg/kg	2.976	49.198 mg/kg	0.00492 %	\checkmark	
10	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		0.45	mg/kg	2.554	1.0 mg/kg	0.0001 %	~	
11	4	zinc { zinc chromate } 024-007-00-3 236-878-9 13530-65-9		98	mg/kg	2.774	236.524 mg/kg	0.0237 %	\checkmark	
12	8	TPH (C6 to C40) petroleum group		<10	mg/kg		<10 mg/kg	<0.001 %		<lod< td=""></lod<>
13		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane 603-181-00-X 216-653-1 1634-04-4		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>


			Determinand		۵							ied	.
#		CLP index number	EC Number	CAS Number	CLP Note	User entered	data	Conv. Factor	Compound c	onc.	Classification value	C Applied	Conc. Not Used
			2011011001		<u></u>							MC	
14		benzene 601-020-00-8	200-753-7	71-43-2	_	<0.001	mg/kg		<0.001	mg/kg	<0.000001 %		<lod< td=""></lod<>
		toluene	200-755-7	/ 1-43-2	-								
15			203-625-9	108-88-3	_	<0.001	mg/kg		<0.001	mg/kg	<0.000001 %		<lod< td=""></lod<>
		ethylbenzene	203-023-9	100-00-3	-								
16	۲	,	202-849-4	100-41-4	_	<0.001	mg/kg		<0.001	mg/kg	<0.000001 %		<lod< td=""></lod<>
		xylene	202-043-4	100-41-4	+								
17		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.002	mg/kg		<0.002	mg/kg	<0.000002 %		<lod< td=""></lod<>
18	4	cyanides { salts of exception of completion of completion of completion of completion of completion of the specified elsewhere of	ex cyanides such as hercuric oxycyanide	s ferrocyanides,		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
	_	006-007-00-5 pH								_			
19	٠			PH		8.4	рН		8.4	рН	8.4 pH		
20		naphthalene	202 040 E	01 00 0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			202-049-5	91-20-3	-							-	
21	۲	acenaphthylene	205-917-1		_	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		acenaphthene	205-917-1	208-96-8	-								
22	8	•	201-469-6	83-32-9	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
23		fluorene				.0.1			-0.1		-0.00001.0/		<lod< td=""></lod<>
23			201-695-5	86-73-7	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
24	8	phenanthrene	004 504 5	05.04.0	_	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
25	0	anthracene	201-581-5 204-371-1	85-01-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
26	0	fluoranthene	204-371-1	120-12-1		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			205-912-4	206-44-0									
27	0	pyrene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			204-927-3	129-00-0									
28		benzo[a]anthracene		1		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			200-280-6	56-55-3									
29		chrysene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
				218-01-9	_								
30		benzo[b]fluoranther	ne 205-911-9	205-99-2	_	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
31		benzo[k]fluoranther				<0.1	mg/kg		<0.1	ma/ka	<0.00001 %		<lod< td=""></lod<>
51		601-036-00-5	205-916-6	207-08-9			mg/kg			ing/kg			~200
32		benzo[a]pyrene; be		50.00.0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		1		50-32-8	+							\square	
33	۵	indeno[123-cd]pyre	ne 205-893-2	193-39-5		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		dibenz[a,h]anthrace											
34			-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>		
25		benzo[ghi]perylene	200-181-8	53-70-3		0.40			0.400		0.0000.100.00		
35			205-883-8	191-24-2		0.49	mg/kg		0.426	mg/kg	0.0000426 %	\checkmark	
36	4	sulfur { <mark>sulfur</mark> }	231-722-6	7704-34-9	-	<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
		010-03 -1- 00-1	201-122-0	1 107-04-3						Total:	0.0398 %	\square	

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

Classification of sample: WS3 0.35m

Sample details

LoW Code:	
Chapter:	17: Construction and Demolition Wastes (including excavated soil
	from contaminated sites)
Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
	03)
	Chapter:

Hazard properties

None identified

Determinands

Moisture content: 12% Wet Weight Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	d data	Conv. Factor	Compound co	onc.	Classification value	MC Applied	Conc. Not Used
1	4		<mark>oxide</mark>	1327-53-3		19	mg/kg	1.32	22.076	mg/kg	0.00221 %	√	
2	4	boron { diboron trio		1303-86-2		0.47	mg/kg	3.22	1.332	mg/kg	0.000133 %	\checkmark	
3	4	cadmium { cadmiur		1306-19-0		0.47	mg/kg	1.142	0.472	mg/kg	0.0000472 %	\checkmark	
4	4	oxide (worst case)		{ • chromium(III)	_	26	mg/kg	1.462	33.44	mg/kg	0.00334 %	~	
5	4	chromium in chrom <mark>oxide</mark> }				<0.5	mg/kg	1.923	<0.962	mg/kg	<0.0000962 %		<lod< th=""></lod<>
6	4		oxide; copper (I) oxio 215-270-7	<mark>de</mark> } 1317-39-1		26	mg/kg	1.126	25.76	mg/kg	0.00258 %	\checkmark	
7	4		t <mark>e</mark> } 231-846-0	7758-97-6	1	54	mg/kg	1.56	74.122	mg/kg	0.00475 %	\checkmark	
8	4		dichloride } 231-299-8	7487-94-7		0.17	mg/kg	1.353	0.202	mg/kg	0.0000202 %	\checkmark	
9	4		<mark>nate</mark> } 238-766-5	14721-18-7		21	mg/kg	2.976	55.001	mg/kg	0.0055 %	\checkmark	
10	4	selenium { seleniun cadmium sulphosel in this Annex 034-002-00-8			_	0.58	mg/kg	2.554	1.303	mg/kg	0.00013 %	~	
11	4	zinc { zinc chromate	<mark>e</mark> } 236-878-9	13530-65-9		130	mg/kg	2.774	317.362	mg/kg	0.0317 %	~	
12	8	TPH (C6 to C40) pe	etroleum group	ТРН		<10	mg/kg		<10	mg/kg	<0.001 %		<lod< th=""></lod<>
13		tert-butyl methyl eth 2-methoxy-2-methy 603-181-00-X		1634-04-4		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< th=""></lod<>

#			Determinand		CLP Note	User entered	data	Conv. Factor	Compound c	onc.	Classification value	MC Applied	Conc. Not Used
		CLP index number	EC Number	CAS Number	Ч			1 dotor			Value	1C ₽	0000
14		benzene		1		<0.001	mg/kg		<0.001	mg/kg	<0.000001 %	2	<lod< td=""></lod<>
14		601-020-00-8	200-753-7	71-43-2		<0.001	шу/ку		<0.001	шу/ку	<0.0000001 /8		<lod< td=""></lod<>
15		toluene				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
-			203-625-9	108-88-3						5.5			
16	۲	ethylbenzene				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
	_	601-023-00-4 xylene	202-849-4	100-41-4									
17		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.002	mg/kg		<0.002	mg/kg	<0.0000002 %		<lod< td=""></lod<>
18	4	cyanides { salts of exception of complete ferricyanides and m specified elsewhere 006-007-00-5	ex cyanides such as ercuric oxycyanide	s ferrocyanides,		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
19	0	pH		PH		8.3	pН		8.3	pН	8.3 pH		
20		naphthalene		p 1 4	+	.0.1	m c.//-		.0.4		.0.00004.0/	H	
20		601-052-00-2	202-049-5	91-20-3	1	<0.1	mg/kg		<0.1	mg/кg	<0.00001 %		<lod< td=""></lod<>
21		acenaphthylene				<0.1	mg/kg		<0.1	ma/ka	<0.00001 %		<lod< td=""></lod<>
		e	205-917-1	208-96-8						ing/itg			
22	۲	acenaphthene	201-469-6	83-32-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
23	۲	fluorene				<0.1	mg/kg		<0.1	ma/ka	<0.00001 %		<lod< td=""></lod<>
			201-695-5	86-73-7	1							Ц	
24	۰	phenanthrene	201-581-5	85-01-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
25	8	anthracene	204-371-1	120-12-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
26	9	fluoranthene	205-912-4	206-44-0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
27		pyrene		,		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			204-927-3	129-00-0]					5.5			
28		benzo[a]anthracene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	_		200-280-6	56-55-3	-							\mathbb{H}	
29		chrysene 601-048-00-0	205-923-4	218-01-9	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
20		benzo[b]fluoranther		F	+	<u> </u>			6.4		0.00001.0/	H	1.00
30			205-911-9	205-99-2		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
31		benzo[k]fluoranthen				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	_	/	205-916-6	207-08-9	-							$\left \right $	
32		benzo[a]pyrene; be	nzolderjchrysene 200-028-5	50-32-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
33	۲	indeno[123-cd]pyre	ne 205-893-2	193-39-5		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
34		dibenz[a,h]anthrace	ene			<0.1	mg/kg		<0.1	mg/ka	<0.00001 %	Π	<lod< td=""></lod<>
			200-181-8	53-70-3	_					0 3		Ц	
35	۲	benzo[ghi]perylene	205-883-8	191-24-2		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
36		sulfur { <mark>sulfur</mark> }	231-722-6	7704-34-9		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
		010-094-00-1	201-122-0	1104-34-9	1					Total:	0.0519 %	\vdash	

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

Classification of sample: WS4 0.45m

Non Hazardous Waste Classified as 17 05 04 in the List of Waste	
---	--

Sample details

Sample Name:	LoW Code:	
WS4 0.45m	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.45-0.55 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
17%		
(wet weight correction)		

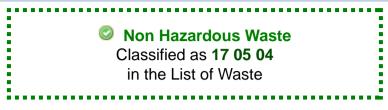
Hazard properties

None identified

Determinands

Moisture content: 17% Wet Weight Moisture Correction applied (MC)

#		Determinand CLP index number EC Number CAS Number	CLP Note	User entered	d data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	4	arsenic { arsenic trioxide } 033-003-00-0 215-481-4 1327-53-3		17	mg/kg	1.32	18.63 mg/kg	0.00186 %	\checkmark	
2	~	boron { diboron trioxide; boric oxide } 005-008-00-8 215-125-8 1303-86-2	_	0.64	mg/kg	3.22	1.71 mg/kg	0.000171 %	\checkmark	
3				0.54	mg/kg	1.142	0.512 mg/kg	0.0000512 %	\checkmark	
4	4	chromium in chromium(III) compounds { Chromium(III) oxide (worst case) } 215-160-9 1308-38-9		23	mg/kg	1.462	27.901 mg/kg	0.00279 %	~	
5	4	chromium in chromium(VI) compounds { chromium(VI) oxide } 024-001-00-0 215-607-8 1333-82-0		<0.5	mg/kg	1.923	<0.962 mg/kg	<0.0000962 %		<lod< th=""></lod<>
6	4	copper { dicopper oxide; copper (I) oxide } 029-002-00-X 215-270-7 1317-39-1		23	mg/kg	1.126	21.493 mg/kg	0.00215 %	\checkmark	
7	4	lead { lead chromate } 082-004-00-2 231-846-0 7758-97-6	_ 1	49	mg/kg	1.56	63.438 mg/kg	0.00407 %	\checkmark	
8	4	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7		0.13	mg/kg	1.353	0.146 mg/kg	0.0000146 %	\checkmark	
9	-	nickel { nickel chromate } 028-035-00-7 238-766-5 14721-18-7		20	mg/kg	2.976	49.406 mg/kg	0.00494 %	\checkmark	
10	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex } 034-002-00-8		0.62	mg/kg	2.554	1.314 mg/kg	0.000131 %	~	
11			-	120	mg/kg	2.774	276.305 mg/kg	0.0276 %	\checkmark	
12	٥	TPH (C6 to C40) petroleum group		<10	mg/kg		<10 mg/kg	<0.001 %		<lod< th=""></lod<>
13		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane 603-181-00-X 216-653-1 1634-04-4		<0.001	mg/kg		<0.001 mg/kg	<0.000001 %		<lod< th=""></lod<>


#			Determinand		Note	User entered	data	Conv. Factor	Compound c	onc.	Classification value	Applied	Conc. Not Used
		CLP index number	EC Number	CAS Number	CLP Note			Factor			value	MC A	Useu
14		benzene				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
			200-753-7	71-43-2									
15		toluene 601-021-00-3	203-625-9	108-88-3	-	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		ethylbenzene	200 020 0	100 00 0									
16			202-849-4	100-41-4		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		xylene											
17		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.002	mg/kg		<0.002	mg/kg	<0.0000002 %		<lod< td=""></lod<>
18	4	cyanides { salts of exception of complete ferricyanides and magnetic specified elsewhere the specified	ex cyanides such as hercuric oxycyanide	s ferrocyanides,		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
		006-007-00-5											
19	٥	рН		PH		7.8	рН		7.8	pН	7.8 pH		
20		naphthalene		<u> </u>		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %	Ħ	<lod< td=""></lod<>
		601-052-00-2	202-049-5	91-20-3									
21	۰	acenaphthylene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			205-917-1	208-96-8									
22	0	acenaphthene	201-469-6	83-32-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			201-409-0	03-32-9	+								
23		fluorene	201-695-5	86-73-7	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
24		phenanthrene				.0.1			-0.1		-0.00001.9/		<lod< td=""></lod<>
24			201-581-5	85-01-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %	Ц	<lod< td=""></lod<>
25	۵	anthracene	204-371-1	120-12-7	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
26	٥	fluoranthene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %	Π	<lod< td=""></lod<>
			205-912-4	206-44-0									
27	0	pyrene	204 027 2	129-00-0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			204-927-3	129-00-0	-								
28		benzo[a]anthracene	200-280-6	56-55-3	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	-	chrysene			+								
29		-	205-923-4	218-01-9	1	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
30		benzo[b]fluoranther	ne	^ 		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		601-034-00-4 benzo[k]fluoranther	205-911-9	205-99-2	-							\vdash	
31			1e 205-916-6	207-08-9	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
32		benzo[a]pyrene; be	nzo[def]chrysene			<0.1	mg/kg		<0.1	ma/ka	<0.00001 %	Ħ	<lod< td=""></lod<>
		601-032-00-3	200-028-5	50-32-8									
33	۲	indeno[123-cd]pyre	ne 205-893-2	193-39-5		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		dibenz[a,h]anthrace		130-03-0	+							\vdash	
34			200-181-8	53-70-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
35	0	benzo[ghi]perylene		· · · · · · · · · · · · · · · · · · ·		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	0		205-883-8	191-24-2	1		39			59		$\left \cdot \right $	
36	4	sulfur {	231-722-6	7704-34-9		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
		l								Total:	0.0453 %		

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

Classification of sample: WS5 0.35m

Sample details

LoW Code:	
Chapter:	17: Construction and Demolition Wastes (including excavated soil
	from contaminated sites)
Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
	03)
	Chapter:

Hazard properties

None identified

Determinands

Moisture content: 15% Wet Weight Moisture Correction applied (MC)

#		Determinand CLP index number EC Number CAS Number		CLP Note	User entered	d data	Conv. Factor	Compound c	onc.	Classification value	MC Applied	Conc. Not Used	
1	4		,	1327-53-3		15	mg/kg	1.32	16.834	mg/kg	0.00168 %	~	
2	4		,	1303-86-2	-	0.46	mg/kg	3.22	1.259	mg/kg	0.000126 %	\checkmark	
3	4		n oxide } 215-146-2	1306-19-0		0.34	mg/kg	1.142	0.33	mg/kg	0.000033 %	\checkmark	
4	~	oxide (worst case) }		{ • chromium(III)	_	22	mg/kg	1.462	27.331	mg/kg	0.00273 %	~	
5	~	oxide }		{ chromium(VI)		<0.5	mg/kg	1.923	<0.962	mg/kg	<0.0000962 %		<lod< td=""></lod<>
6	4	copper { dicopper o	xide; copper (I) oxid			19	mg/kg	1.126	18.183	mg/kg	0.00182 %	\checkmark	
7	4		e } 231-846-0	7758-97-6	1	42	mg/kg	1.56	55.685	mg/kg	0.00357 %	\checkmark	
8	4			7487-94-7		0.12	mg/kg	1.353	0.138	mg/kg	0.0000138 %	\checkmark	
9	4		n <mark>ate</mark> } 238-766-5	14721-18-7		20	mg/kg	2.976	50.597	mg/kg	0.00506 %	\checkmark	
10	4	selenium { selenium cadmium sulphosele in this Annex 034-002-00-8			_	0.56	mg/kg	2.554	1.216	mg/kg	0.000122 %	~	
11	4	zinc { zinc chromate	} 236-878-9	13530-65-9	_	99	mg/kg	2.774	233.444	mg/kg	0.0233 %	\checkmark	
12	0	TPH (C6 to C40) pe	• •	ТРН		<10	mg/kg		<10	mg/kg	<0.001 %		<lod< td=""></lod<>
13		tert-butyl methyl eth 2-methoxy-2-methyl 603-181-00-X 2	propane	1634-04-4	-	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>

#			Determinand		CLP Note	User entered	data	Conv. Factor	Compound c	onc.	Classification value	Applied	Conc. Not Used
		CLP index number	EC Number	CAS Number	Ľ P I			1 actor			value	MC A	0360
4.4		benzene				-0.001			-0.001	m a/// a	-0.000001.0/	2	<lod< td=""></lod<>
14		601-020-00-8	200-753-7	71-43-2		<0.001	mg/kg		<0.001	mg/kg	<0.000001 %		<lud< td=""></lud<>
15		toluene				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
15		601-021-00-3	203-625-9	108-88-3		<0.001	шу/ку		<0.001	шу/ку	<0.0000001 /8		LOD
16		ethylbenzene				<0.001	mg/kg		<0.001	ma/ka	<0.0000001 %		<lod< td=""></lod<>
		601-023-00-4	202-849-4	100-41-4			ing/kg			iiig/itg			~20D
		xylene											
17			202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.002	mg/kg		<0.002	mg/kg	<0.000002 %		<lod< td=""></lod<>
18	4	cyanides { [•] salts of exception of completion of completion of completion of completion of completion of the specified elsewhere of the specified elsewher	ex cyanides such as hercuric oxycyanide	s ferrocyanides,		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
		006-007-00-5										Ц	
19	۲	рН		PH		7.8	рН		7.8	pН	7.8 pH		
20		naphthalene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			202-049-5	91-20-3									
21	۲	acenaphthylene	205-917-1			<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		acenaphthene	205-917-1	208-96-8								H	
22	8	·	201-469-6	83-32-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
23		fluorene				<0.1	mg/kg		<0.1	ma/ka	<0.00001 %		<lod< td=""></lod<>
			201-695-5	86-73-7	1								
24	8	phenanthrene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
25	۲	anthracene	201-581-5	85-01-8		<0.1	mg/kg		<0.1	ma/ka	<0.00001 %		<lod< td=""></lod<>
			204-371-1	120-12-7						5.5			
26	8	fluoranthene	005 040 4	boc 11 0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			205-912-4	206-44-0								H	
27	۲	pyrene	204-927-3	129-00-0	4	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		benzo[a]anthracene		129-00-0								H	
28			200-280-6	56-55-3	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		chrysene			\top						0.00004.51	H	
29			205-923-4	218-01-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
30		benzo[b]fluoranther				<0.1	mg/kg		<0.1	ma/ka	<0.00001 %		<lod< td=""></lod<>
			205-911-9	205-99-2	1_						,	Ц	
31		benzo[k]fluoranther				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			205-916-6	207-08-9	-							Н	
32		benzo[a]pyrene; be 601-032-00-3		50-32-8	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
0.2	0	indeno[123-cd]pyre			+	<u> </u>					0.0000 1.01	H	1.65
33	-		205-893-2	193-39-5	1	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
34	İ	dibenz[a,h]anthrace				<0.1	ma/ka		<0.1	ma/ka	<0.00001 %	Π	<lod< td=""></lod<>
-54		601-041-00-2	200-181-8	53-70-3		<0.1	mg/kg		<0.1	ту/кд	<0.00001 %		
35	8	benzo[ghi]perylene				<0.1	mg/kg		<0.1	ma/ka	<0.00001 %		<lod< td=""></lod<>
			205-883-8	191-24-2	1_							Ц	
36	4	sulfur { <mark>sulfur</mark> } 016-094-00-1	231-722-6	7704-34-9	-	<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
		1		1		1				Total:	0.04 %		

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

Classification of sample: WS6 0.30m

Non Hazardous Waste Classified as 17 05 04 in the List of Waste	
---	--

Sample details

Sample Name:	LoW Code:	
WS6 0.30m	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.30-0.40 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
48%		
(wet weight correction)		

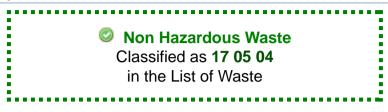
Hazard properties

None identified

Determinands

Moisture content: 48% Wet Weight Moisture Correction applied (MC)

#		Determinand CLP index number EC Number CAS Number	CLP Note	User entered	data	Conv. Factor	Compound c	onc.	Classification value	MC Applied	Conc. Not Used
1	~	arsenic { arsenic trioxide } 033-003-00-0 215-481-4 1327-53-3		20	mg/kg	1.32	13.731	mg/kg	0.00137 %	\checkmark	
2	~	boron { diboron trioxide; boric oxide } 005-008-00-8 215-125-8 1303-86-2		0.75	mg/kg	3.22	1.256	mg/kg	0.000126 %	\checkmark	
3		cadmium { cadmium oxide } 048-002-00-0 215-146-2 1306-19-0		0.46	mg/kg	1.142	0.273	mg/kg	0.0000273 %	\checkmark	
4	4	chromium in chromium(III) compounds { chromium(III) oxide (worst case) } 215-160-9 1308-38-9		36	mg/kg	1.462	27.36	mg/kg	0.00274 %	~	
5	4	chromium in chromium(VI) compounds { chromium(VI) oxide } 024-001-00-0 215-607-8 1333-82-0		<0.5	mg/kg	1.923	<0.962	mg/kg	<0.0000962 %		<lod< td=""></lod<>
6		copper { dicopper oxide; copper (I) oxide } 029-002-00-X 215-270-7 1317-39-1		24	mg/kg	1.126	14.051	mg/kg	0.00141 %	~	
7	~	lead { lead chromate } 082-004-00-2 231-846-0 7758-97-6	1	77	mg/kg	1.56	62.455	mg/kg	0.004 %	\checkmark	
8	~	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7		0.13	mg/kg	1.353	0.0915	mg/kg	0.00000915 %	~	
9		nickel { nickel chromate } 028-035-00-7 238-766-5 14721-18-7		25	mg/kg	2.976	38.691	mg/kg	0.00387 %	\checkmark	
10	~	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		0.64	mg/kg	2.554	0.85	mg/kg	0.000085 %	~	
11	4	zinc { zinc chromate } 024-007-00-3 236-878-9 13530-65-9		110	mg/kg	2.774	158.681	mg/kg	0.0159 %	\checkmark	
12	۲	TPH (C6 to C40) petroleum group		<10	mg/kg		<10	mg/kg	<0.001 %		<lod< td=""></lod<>
13		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane 603-181-00-X 216-653-1 1634-04-4		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>


			Determinand		te			Conv.			Classification	lied	Conc. Not
#		CLP index number	EC Number	CAS Number	CLP Note	User entered	data	Factor	Compound co	onc.	value	MC Applied	Used
14		benzene				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %	2	<lod< td=""></lod<>
			200-753-7	71-43-2	+								
15		toluene	202 625 0	400.00.0	_	<0.001	mg/kg		<0.001	mg/kg	<0.000001 %		<lod< td=""></lod<>
		601-021-00-3 ethylbenzene	203-625-9	108-88-3									
16	•		202-849-4	100-41-4		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		xylene											
17			202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.002	mg/kg		<0.002	mg/kg	<0.000002 %		<lod< td=""></lod<>
18	4					<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
		006-007-00-5									1		
19	۲	pH		PH	_	7.7	pН		7.7	pН	7.7 pH		
20		naphthalene	000.040.5	04.00.0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		601-052-00-2 acenaphthylene	202-049-5	91-20-3	-							\vdash	
21	0		205-917-1	208-96-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
22	۰	acenaphthene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %	Π	<lod< td=""></lod<>
			201-469-6	83-32-9	_								
23	۲	fluorene	201-695-5	86-73-7	_	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	8	phenanthrene	201-095-5	00-73-7									
24		·	201-581-5	85-01-8	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
25	۲	anthracene	204-371-1	120-12-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
26	0	fluoranthene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		pyrene	205-912-4	206-44-0	-								
27	•		204-927-3	129-00-0	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		benzo[a]anthracene				2.4					0.00004.0/		1.05
28		601-033-00-9	200-280-6	56-55-3	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
29		chrysene 601-048-00-0	205-923-4	218-01-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %	Π	<lod< td=""></lod<>
_		benzo[b]fluoranther		210-01-3	+							\vdash	
30			205-911-9	205-99-2	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
31		benzo[k]fluoranther		boz og o		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
20		601-036-00-5 benzo[a]pyrene; be	205-916-6 nzo[def]chrysene	207-08-9	+	0.4			0.4	mc//	.0.00004.0/	\square	
32			200-028-5	50-32-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
33	0	indeno[123-cd]pyre	ne 205-893-2	193-39-5		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		dibenz[a,h]anthrace			+	<u> </u>			0.1		0.00001.0/	H	1.05
34			200-181-8	53-70-3	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
35		benzo[ghi]perylene				<0.1	ma/ka		<0.1	ma/ka	<0.00001 %		<lod< td=""></lod<>
55			205-883-8	191-24-2		<0.1	mg/kg		20.1	mg/kg	COUDER		~LOD
36	4	sulfur { <mark>sulfur</mark> } 016-094-00-1	231-722-6	7704-34-9		1.2	mg/kg		0.624	mg/kg	0.0000624 %	\checkmark	
									L	Total:	0.0309 %	+	

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

Classification of sample: WS7 0.30m

Sample details

Chapter:	17: Construction and Demolition Wastes (including excavated soil from contaminated sites)
	from contaminated sites)
Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
-	03)
	intry:

Hazard properties

None identified

Determinands

Moisture content: 16% Wet Weight Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	d data	Conv. Factor	Compound con	c.	Classification value	MC Applied	Conc. Not Used
1	4		<mark>oxide</mark>	1327-53-3		19	mg/kg	1.32	21.072 m	g/kg	0.00211 %	~	
2	4		xide; boric oxide } 215-125-8	1303-86-2		0.58	mg/kg	3.22	1.569 m	g/kg	0.000157 %	\checkmark	
3	4		<mark>n oxide</mark> } 215-146-2	1306-19-0		0.46	mg/kg	1.142	0.441 m	g/kg	0.0000441 %	\checkmark	
4	4	oxide (worst case)		• { • <mark>chromium(III)</mark> 1308-38-9	_	25	mg/kg	1.462	30.693 m	g/kg	0.00307 %	~	
5	4	chromium in chrom <mark>oxide</mark> }				<0.5	mg/kg	1.923	<0.962 m	g/kg	<0.0000962 %		<lod< th=""></lod<>
6	~		o <mark>xide; copper (I) oxi</mark> 215-270-7	<mark>de</mark> } 1317-39-1		24	mg/kg	1.126	22.698 m	g/kg	0.00227 %	\checkmark	
7	4		t <mark>e</mark> } 231-846-0	7758-97-6	1	51	mg/kg	1.56	66.822 m	g/kg	0.00428 %	\checkmark	
8	4		<mark>dichloride</mark> } 231-299-8	7487-94-7		0.12	mg/kg	1.353	0.136 m	g/kg	0.0000136 %	\checkmark	
9	~		<mark>nate</mark> } 238-766-5	14721-18-7		20	mg/kg	2.976	50.001 m	g/kg	0.005 %	\checkmark	
10	~	selenium { seleniun cadmium sulphosel in this Annex } 034-002-00-8			_	0.57	mg/kg	2.554	1.223 m	g/kg	0.000122 %	~	
11	4	zinc { zinc chromate	<mark>e</mark> } 236-878-9	13530-65-9		110	mg/kg	2.774	256.331 m	g/kg	0.0256 %	\checkmark	
12	8	TPH (C6 to C40) pe	etroleum group	ТРН		<10	mg/kg		<10 m	g/kg	<0.001 %		<lod< th=""></lod<>
13		tert-butyl methyl eth 2-methoxy-2-methy 603-181-00-X		1634-04-4	-	<0.001	mg/kg		<0.001 m	g/kg	<0.0000001 %		<lod< th=""></lod<>

#			Determinand		CLP Note	User entered	data	Conv. Factor	Compound con	nc.	Classification value	Applied	Conc. Not Used
		CLP index number	EC Number	CAS Number	ĽЪ							MC /	
14	_	benzene		1		-0.001	ma/ka		-0.001 ~~	aa/ka	-0.000001.8/	_	<lod< td=""></lod<>
14		601-020-00-8	200-753-7	71-43-2		<0.001	mg/kg		<0.001 m	ng/kg	<0.000001 %		<lod< td=""></lod<>
15		toluene				<0.001	ma/ka		<0.001 m	aa/ka	<0.0000001 %		<lod< td=""></lod<>
13		601-021-00-3	203-625-9	108-88-3		<0.001	mg/kg		<0.001 11	ng/kg	<0.0000001 /8		LOD
16	0	ethylbenzene				<0.001	mg/kg		<0.001 m	na/ka	<0.0000001 %		<lod< td=""></lod<>
10		601-023-00-4	202-849-4	100-41-4		10.001				ig/itg			~E0B
		xylene											
17			202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.002	mg/kg		<0.002 m	ng/kg	<0.0000002 %		<lod< td=""></lod<>
18	4	cyanides { salts of exception of complete ferricyanides and means the specified elsewhere the specifie	ex cyanides such a ercuric oxycyanide	s ferrocyanides,		<0.5	mg/kg	1.884	<0.942 m	ng/kg	<0.0000942 %		<lod< td=""></lod<>
		006-007-00-5 pH			-								
19	Ŭ			PH		8.2	рН		8.2 p	Н	8.2 pH		
20		naphthalene	202.040.5	01.00.0		<0.1	mg/kg		<0.1 m	ng/kg	<0.00001 %		<lod< td=""></lod<>
		l	202-049-5	91-20-3	+		-						
21	۲	acenaphthylene	205-917-1	208-96-8	_	<0.1	mg/kg		<0.1 m	ng/kg	<0.00001 %		<lod< td=""></lod<>
	8	acenaphthene	200-317-1	200-30-0	+							H	
22	۲	· ·	201-469-6	83-32-9	-	<0.1	mg/kg		<0.1 m	ng/kg	<0.00001 %		<lod< td=""></lod<>
~~		fluorene				2.4					0.00004.0/	H	
23			201-695-5	86-73-7	-	<0.1	mg/kg		<0.1 m	ng/kg	<0.00001 %		<lod< td=""></lod<>
24	8	phenanthrene				<0.1	mg/kg		<0.1 m	aa/ka	<0.00001 %		<lod< td=""></lod<>
27			201-581-5	85-01-8		<0.1	ing/kg			ig/itg	<0.00001 //		
25	8	anthracene	204-371-1	120-12-7		<0.1	mg/kg		<0.1 m	ng/kg	<0.00001 %		<lod< td=""></lod<>
	_	fluoranthene	204-371-1	120-12-1	+								
26			205-912-4	206-44-0	-	<0.1	mg/kg		<0.1 m	ng/kg	<0.00001 %		<lod< td=""></lod<>
		pyrene			-							H	
27	-		204-927-3	129-00-0	-	<0.1	mg/kg		<0.1 m	ng/kg	<0.00001 %		<lod< td=""></lod<>
28		benzo[a]anthracene	9			<0.1	ma/ka		<0.1 m	aa/ka	<0.00001 %		<lod< td=""></lod<>
20		601-033-00-9	200-280-6	56-55-3		<0.1	mg/kg		<0.1 11	ng/kg	<0.00001 /8		LOD
29		chrysene				<0.1	mg/kg		<0.1 m	ng/ka	<0.00001 %		<lod< td=""></lod<>
-			205-923-4	218-01-9	1_		J9			53			
30		benzo[b]fluoranther		005 00 0		<0.1	mg/kg		<0.1 m	ng/kg	<0.00001 %		<lod< td=""></lod<>
			205-911-9	205-99-2	+							\square	
31		benzo[k]fluoranther		207.08.0	_	<0.1	mg/kg		<0.1 m	ng/kg	<0.00001 %		<lod< td=""></lod<>
	_	601-036-00-5 benzo[a]pyrene; be	205-916-6	207-08-9	+							$\left \cdot \right $	
32			200-028-5	50-32-8	_	<0.1	mg/kg		<0.1 m	ng/kg	<0.00001 %		<lod< td=""></lod<>
	0	indeno[123-cd]pyre			+							H	
33	-		205-893-2	193-39-5	-	<0.1	mg/kg		<0.1 m	ng/kg	<0.00001 %		<lod< td=""></lod<>
24		dibenz[a,h]anthrace		1	1	-0.1	ma/les		10.1	00/100	-0.00001.0/		4.00
34		601-041-00-2	200-181-8	53-70-3		<0.1	mg/kg		<0.1 m	ig/kg	<0.00001 %		<lod< td=""></lod<>
35	0	benzo[ghi]perylene				<0.1	mg/kg		<0.1 m	na/ka	<0.00001 %		<lod< td=""></lod<>
			205-883-8	191-24-2	1	NO.1	ing/kg			ig/itg			
36	4	sulfur { <mark>sulfur</mark> } 016-094-00-1	231-722-6	7704-34-9		<1	mg/kg		<1 m	ng/kg	<0.0001 %		<lod< td=""></lod<>

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

Classification of sample: WS7 0.60m

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

LoW Code:	
Chapter:	17: Construction and Demolition Wastes (including excavated soil
	from contaminated sites)
Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
	03)
	Chapter:

Hazard properties

None identified

Determinands

Moisture content: 17% Wet Weight Moisture Correction applied (MC)

#		Determinand CLP index number EC Number CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	4	arsenic { arsenic trioxide } 033-003-00-0 215-481-4 1327-53-3		18	mg/kg	1.32	19.726 mg/kg	0.00197 %	\checkmark	
2	~			0.56	mg/kg	3.22	1.497 mg/kg	0.00015 %	\checkmark	
3	4			0.42	mg/kg	1.142	0.398 mg/kg	0.0000398 %	~	
4	4	chromium in chromium(III) compounds { Chromium(III) oxide (worst case) } 215-160-9 1308-38-9		23	mg/kg	1.462	27.901 mg/kg	0.00279 %	~	
5	4	chromium in chromium(VI) compounds { chromium(VI) oxide } 024-001-00-0 125-607-8 1333-82-0		<0.5	mg/kg	1.923	<0.962 mg/kg	<0.0000962 %		<lod< th=""></lod<>
6	~	copper { dicopper oxide; copper (I) oxide } 029-002-00-X 215-270-7 1317-39-1		22	mg/kg	1.126	20.559 mg/kg	0.00206 %	\checkmark	
7		lead { lead chromate } 082-004-00-2 231-846-0 7758-97-6	_ 1	46	mg/kg	1.56	59.554 mg/kg	0.00382 %	\checkmark	
8		mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7		<0.1	mg/kg	1.353	<0.135 mg/kg	<0.0000135 %		<lod< th=""></lod<>
9		nickel { nickel chromate } 028-035-00-7 238-766-5 14721-18-7	_	20	mg/kg	2.976	49.406 mg/kg	0.00494 %	\checkmark	
10	*	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex } 034-002-00-8		0.68	mg/kg	2.554	1.441 mg/kg	0.000144 %	~	
11		zinc { zinc chromate } 024-007-00-3 236-878-9 13530-65-9	-	110	mg/kg	2.774	253.28 mg/kg	0.0253 %	\checkmark	
12	۲	TPH (C6 to C40) petroleum group		<10	mg/kg		<10 mg/kg	<0.001 %		<lod< th=""></lod<>
13		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane 603-181-00-X 216-653-1 1634-04-4		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< th=""></lod<>

#			Determinand		Note	User entered	data	Conv. Factor	Compound co	onc.	Classification value	Applied	Conc. Not Used
		CLP index number	EC Number	CAS Number	CLP Note			1 actor			value	MC A	USEU
14		benzene				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
			200-753-7	71-43-2	-							\square	
15		toluene 601-021-00-3	203-625-9	108-88-3	-	<0.001	mg/kg		<0.001	mg/kg	<0.000001 %		<lod< td=""></lod<>
	_	ethylbenzene	203-023-9	100-00-3	-								
16	Θ		202-849-4	100-41-4	-	<0.001	mg/kg		<0.001 1	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		xylene											
17			202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.002	mg/kg		<0.002	mg/kg	<0.0000002 %		<lod< td=""></lod<>
18	4	cyanides { salts of exception of complete ferricyanides and methods are consistent of the specified elsewhere 006-007-00-5	ex cyanides such as hercuric oxycyanide	s ferrocyanides,		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
19	0	006-007-00-5 рН		[8.4	pН		8.4	pН	8.4 pH		
		nanhthalana		PH	_							\square	
20		naphthalene 601-052-00-2	202-049-5	91-20-3	-	<0.1	mg/kg		<0.1 I	mg/kg	<0.00001 %		<lod< td=""></lod<>
~ (acenaphthylene		01200								H	
21	-		205-917-1	208-96-8		<0.1	mg/kg		<0.1 I	mg/kg	<0.00001 %		<lod< td=""></lod<>
22	0	acenaphthene	201-469-6	83-32-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		fluorene	201 100 0	00 02 0								H	
23	-		201-695-5	86-73-7		<0.1	mg/kg		<0.1 I	mg/kg	<0.00001 %		<lod< td=""></lod<>
24	8	phenanthrene	201-581-5	85-01-8	_	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
25	0	anthracene	204-371-1	120-12-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
26	0	fluoranthene	205-912-4	206-44-0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
07		pyrene				0.4			0.1		0.00001.0/		1.00
27			204-927-3	129-00-0		<0.1	mg/kg		<0.1 I	mg/kg	<0.00001 %		<lod< td=""></lod<>
28		benzo[a]anthracene	e			<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
_			200-280-6	56-55-3						5.5			
29		chrysene	005 000 4	040.04.0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		ĺ		218-01-9	-							\vdash	
30		benzo[b]fluoranther 601-034-00-4		205-99-2	-	<0.1	mg/kg		<0.1 I	mg/kg	<0.00001 %		<lod< td=""></lod<>
		benzo[k]fluoranther			╞	<u> </u>					0.0000 (0)	H	
31				207-08-9	-	<0.1	mg/kg		<0.1 I	mg/kg	<0.00001 %		<lod< td=""></lod<>
32		benzo[a]pyrene; be 601-032-00-3		50-32-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	6	indeno[123-cd]pyre		00020								\vdash	
33	9		205-893-2	193-39-5		<0.1	mg/kg		<0.1 I	mg/kg	<0.00001 %		<lod< td=""></lod<>
24		dibenz[a,h]anthrace		[.0.1			-0.1		-0.00001.0/	H	
34				53-70-3		<0.1	mg/kg		<0.1 I	під/кд	<0.00001 %		<lod< td=""></lod<>
35		benzo[ghi]perylene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %	\square	<lod< td=""></lod<>
			205-883-8	191-24-2	1							Ц	
36	4	sulfur {	231-722-6	7704-34-9		1.4	mg/kg		1.162	mg/kg	0.000116 %	\checkmark	
										Total:	0.0427 %		

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

Report created by Howard Daley on 11 Sep 2020

Appendix A: Classifier defined and non CLP determinands

• chromium(III) oxide (worst case) (EC Number: 215-160-9, CAS Number: 1308-38-9)

Conversion factor: 1.462 Description/Comments: Data from C&L Inventory Database Data source: https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/33806 Data source date: 17 Jul 2015 Hazard Statements: Acute Tox. 4 H332, Acute Tox. 4 H302, Eye Irrit. 2 H319, STOT SE 3 H335, Skin Irrit. 2 H315, Resp. Sens. 1 H334, Skin Sens. 1 H317, Repr. 1B H360FD, Aquatic Acute 1 H400, Aquatic Chronic 1 H410

• TPH (C6 to C40) petroleum group (CAS Number: TPH)

Description/Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: Flam. Liq. 3 H226, Asp. Tox. 1 H304, STOT RE 2 H373, Muta. 1B H340, Carc. 1B H350, Repr. 2 H361d, Aquatic Chronic 2 H411

ethylbenzene (EC Number: 202-849-4, CAS Number: 100-41-4)

CLP index number: 601-023-00-4

Description/Comments:

Data source: Commission Regulation (EU) No 605/2014 – 6th Adaptation to Technical Progress for Regulation (EC) No 1272/2008. (ATP6)

Additional Hazard Statement(s): Carc. 2 H351

Reason for additional Hazards Statement(s):

03 Jun 2015 - Carc. 2 H351 hazard statement sourced from: IARC Group 2B (77) 2000

• salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex

CLP index number: 006-007-00-5

Description/Comments: Conversion factor based on a worst case compound: sodium cyanide Data source: Commission Regulation (EC) No 790/2009 - 1st Adaptation to Technical Progress for Regulation (EC) No 1272/2008. (ATP1) Additional Hazard Statement(s): EUH032 >= 0.2 % Reason for additional Hazards Statement(s):

14 Dec 2015 - EUH032 >= 0.2 % hazard statement sourced from: WM3, Table C12.2

pH (CAS Number: PH)

Description/Comments: Appendix C4 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: None.

^a acenaphthylene (EC Number: 205-917-1, CAS Number: 208-96-8)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015 Hazard Statements: Acute Tox. 4 H302, Acute Tox. 1 H330, Acute Tox. 1 H310, Eye Irrit. 2 H319, STOT SE 3 H335, Skin Irrit. 2 H315

acenaphthene (EC Number: 201-469-6, CAS Number: 83-32-9)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015 Hazard Statements: Eye Irrit. 2 H319 , STOT SE 3 H335 , Skin Irrit. 2 H315 , Aquatic Acute 1 H400 , Aquatic Chronic 1 H410 , Aquatic Chronic 2 H411

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015

Hazard Statements: Aquatic Acute 1 H400 , Aquatic Chronic 1 H410

Report created by Howard Daley on 11 Sep 2020

[•] phenanthrene (EC Number: 201-581-5, CAS Number: 85-01-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015

Hazard Statements: Acute Tox. 4 H302 , Eye Irrit. 2 H319 , STOT SE 3 H335 , Carc. 2 H351 , Skin Sens. 1 H317 , Aquatic Acute 1 H400 , Aquatic Chronic 1 H410 , Skin Irrit. 2 H315

^a anthracene (EC Number: 204-371-1, CAS Number: 120-12-7)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015 Hazard Statements: Eye Irrit. 2 H319 , STOT SE 3 H335 , Skin Irrit. 2 H315 , Skin Sens. 1 H317 , Aquatic Acute 1 H400 , Aquatic Chronic 1 H410

• fluoranthene (EC Number: 205-912-4, CAS Number: 206-44-0)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 21 Aug 2015 Hazard Statements: Acute Tox. 4 H302, Aguatic Acute 1 H400, Aguatic Chronic 1 H410

• pyrene (EC Number: 204-927-3, CAS Number: 129-00-0)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 2014 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 21 Aug 2015 Hazard Statements: Skin Irrit. 2 H315, Eye Irrit. 2 H319, STOT SE 3 H335, Aquatic Acute 1 H400, Aquatic Chronic 1 H410

• indeno[123-cd]pyrene (EC Number: 205-893-2, CAS Number: 193-39-5)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Carc. 2 H351

• benzo[ghi]perylene (EC Number: 205-883-8, CAS Number: 191-24-2)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 28/02/2015 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 23 Jul 2015 Hazard Statements: Aquatic Acute 1 H400, Aquatic Chronic 1 H410

Appendix B: Rationale for selection of metal species

arsenic {arsenic trioxide}

Reasonable case CLP species based on hazard statements/molecular weight and most common (stable) oxide of arsenic. Industrial sources include: smelting; main precursor to other arsenic compounds (edit as required)

boron {diboron trioxide; boric oxide}

Reasonable case CLP species based on hazard statements/ molecular weight, physical form and low solubility. Industrial sources include: fluxing agent for glass/enamels; additive for fibre optics, borosilicate glass (edit as required)

cadmium {cadmium oxide}

Reasonable case CLP species based on hazard statements/molecular weight, very low solubility in water. Industrial sources include: electroplating baths, electrodes for storage batteries, catalysts, ceramic glazes, phosphors, pigments and nematocides. (edit as required) Worst case compounds in CLP: cadmium sulphate, chloride, fluoride & iodide not expected as either very soluble and/or compound's industrial usage not related to site history (edit as required)

chromium in chromium(III) compounds {chromium(III) oxide (worst case)}

Reasonable case species based on hazard statements/molecular weight. Industrial sources include: tanning, pigment in paint, inks and glass (edit as required)

chromium in chromium(VI) compounds {chromium(VI) oxide}

Worst case CLP species based on hazard statements/molecular weight. Industrial sources include: production stainless steel, electroplating, wood preservation, anti-corrosion agents or coatings, pigments (edit as required)

copper {dicopper oxide; copper (I) oxide}

Reasonable case CLP species based on hazard statements/molecular weight and insolubility in water. Industrial sources include: oxidised copper metal, brake pads, pigments, antifouling paints, fungicide. (edit as required) Worse case copper sulphate is very soluble and likely to have been leached away if ever present and/or not enough soluble sulphate detected. (edit as required)

HazWasteOnline[™]

Report created by Howard Daley on 11 Sep 2020

lead {lead chromate}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

mercury {mercury dichloride}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

nickel {nickel chromate}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

selenium (selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex)

Harmonised group entry used as most reasonable case. Pigment cadmium sulphoselenide not likely to be present in this soil. No evidence for the other CLP entries: sodium selenite, nickel II selenite and nickel selenide, to be present in this soil. (edit as required)

zinc {zinc chromate}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

cyanides {salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex}

Harmonised group entry used as most reasonable case as complex cyanides and those specified elsewhere in the annex are not likely to be present in this soil: [Note conversion factor based on a worst case compound: sodium cyanide] (edit as required)

sulfur {sulfur}

Elemental sulfur most likely to be worst case scenario hazardous

Appendix C: Version

HazWasteOnline Classification Engine: WM3 1st Edition v1.1, May 2018 HazWasteOnline Classification Engine Version: 2020.241.4455.8692 (28 Aug 2020) HazWasteOnline Database: 2020.241.4455.8692 (28 Aug 2020)

This classification utilises the following guidance and legislation: WM3 v1.1 - Waste Classification - 1st Edition v1.1 - May 2018 CLP Regulation - Regulation 1272/2008/EC of 16 December 2008 1st ATP - Regulation 790/2009/EC of 10 August 2009 2nd ATP - Regulation 286/2011/EC of 10 March 2011 3rd ATP - Regulation 618/2012/EU of 10 July 2012 4th ATP - Regulation 487/2013/EU of 8 May 2013 Correction to 1st ATP - Regulation 758/2013/EU of 7 August 2013 5th ATP - Regulation 944/2013/EU of 2 October 2013 6th ATP - Regulation 605/2014/EU of 5 June 2014 WFD Annex III replacement - Regulation 1357/2014/EU of 18 December 2014 Revised List of Wastes 2014 - Decision 2014/955/EU of 18 December 2014 7th ATP - Regulation 2015/1221/EU of 24 July 2015 8th ATP - Regulation (EU) 2016/918 of 19 May 2016 9th ATP - Regulation (EU) 2016/1179 of 19 July 2016 10th ATP - Regulation (EU) 2017/776 of 4 May 2017 HP14 amendment - Regulation (EU) 2017/997 of 8 June 2017 13th ATP - Regulation (EU) 2018/1480 of 4 October 2018 14th ATP - Regulation (EU) 2020/217 of 4 October 2019 POPs Regulation 2004 - Regulation 850/2004/EC of 29 April 2004 1st ATP to POPs Regulation - Regulation 756/2010/EU of 24 August 2010 2nd ATP to POPs Regulation - Regulation 757/2010/EU of 24 August 2010

Appendix VII

Project Number Project Name Client	C3341 Giddons Gleeds N		•		td				W	501
				Det	ection l	Limit				
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppr	Depth of Installation. (mbgl)	Depth of Groundwater (mbg
00:00	<0.1	<0.1	<0.1	20.9	<0.1	<1	<1		2.79	2.78
00:15	<0.1	<0.1	<0.1	18.0	3.3	1	<1			
00:30	<0.1	<0.1	<0.1	17.0	3.3	<1	1			
00:45	<0.1	<0.1	<0.1	16.9	3.3	<1	1			
01:00	<0.1	<0.1	<0.1	16.9	3.3	1	<1		_	
01:15	<0.1	<0.1	<0.1	16.9	3.3	1	1			
01:30	<0.1	<0.1	<0.1	16.9	3.3	<1	1			
01:45	<0.1	<0.1	<0.1	16.9	3.3	<1	<1		_	
02:00	<0.1	<0.1	<0.1	16.9	3.3	<1	<1		_	
02:15	<0.1	<0.1	<0.1	16.8	3.3	<1	<1			
02:30	<0.1	<0.1	<0.1	16.8	3.4	1	1			
02:45	<0.1	<0.1	<0.1	16.8	3.4	<1	<1			
03:00	<0.1	<0.1	<0.1	16.8	3.4	<1	<1			
03:15	<0.1	<0.1	<0.1	16.8	3.4	<1	<1			
03:30	<0.1	<0.1	<0.1	16.8	3.4	<1	<1			
03:45	╢╢	< 0.1	< 0.1	16.8	3.4	<1	<1		-	
04:00	╂┨──┨	<0.1	< 0.1	16.8	3.4	<1	<1			└─── ┨
04:15	╂┨──┨	<0.1	<0.1	16.8	3.4	<1	<1		-	
04:30	╂┨──┤	<0.1	<0.1	16.8	3.4	<1	<1			—
04:45	╂┨──┨	<0.1 <0.1	<0.1 <0.1	16.8 16.8	3.4 3.4	<1 1	<1 1		-	
Steady	<0.1	<0.1 <0.1	<0.1 <0.1	16.8	3.4 3.4	1.0	1.0	#####	2.79	2.78
Peak	0.0	0.0	0.0	20.9	3.4	1.0	1.0	0.0	2.79	2.78
Date		Not	tes:							
27.08.2020	Engine	er	НВ		Baro	Pressu	ire Tren			
	Equipm	nent	GFM43	30		Air Te	emp (°C)		

Project Number Project Name Client	C3341 Giddons Gleeds N		-		td				WS	506	
				Det	ection l	Limit					
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1			
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppr	Depth of Installation. (mbgl)	Depth of Groundwater (mbg	
00:00	<0.1	<0.1	<0.1	21.1	<0.1	<1	<1		2.90	DRY	
00:15	<0.1	<0.1	<0.1	19.2	1.0	<1	1				
00:30	<0.1	<0.1	<0.1	18.9	1.1	1	1				
00:45	<0.1	<0.1	<0.1	18.8	1.1	<1	1				
01:00	<0.1	<0.1	<0.1	18.8	1.1	<1	<1				
01:15	<0.1	<0.1	<0.1	18.8	1.1	<1	<1				
01:30	<0.1	<0.1	<0.1	18.8	1.1	<1	<1				
01:45	<0.1	<0.1	<0.1	18.8	1.1	<1	<1				
02:00	<0.1	<0.1	<0.1	18.7	1.2	1	1				
02:15	<0.1	<0.1	<0.1	18.7	1.2	<1	<1				
02:30	<0.1	<0.1	<0.1	18.6	1.3	<1	<1				
02:45	<0.1	<0.1	<0.1	18.6	1.3	<1	<1				
03:00	<0.1	<0.1	<0.1	18.6	1.3	<1	<1				
03:15	<0.1	<0.1	<0.1	18.6	1.3	<1	<1				
03:30	<0.1	<0.1	<0.1	18.6	1.3	<1	<1				
03:45	<0.1	<0.1	<0.1	18.6	1.3	<1	<1				
04:00	<0.1	<0.1	<0.1	18.6	1.3	1	2				
04:15											
04:30											
04:45											
05:00											
Steady	<0.1	<0.1	<0.1	18.6	1.3	1.0	2.0	#####	2.90	DRY	
Peak	0.0	0.0	0.0	21.1	1.3	1.0	2.0	0.0	2.90	0.00	
Date 27.08.2020	Engine	Notes: er HB			Barometric Pressure, mbar Pressure Trend				0		
	Equipm	nent	GFM43	30		Air Te	emp (°C)		0	

Project Number Project Name Client	C3341 Giddons Gleeds N	•	-	rvices L	td				W	507
				Det	ection l	imit				
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (pp	Depth of Installation. (mbgl)	Depth of Groundwater (mb
00:00								_		
00:15			Borehol	e Flood	ed - Un	able to	monito	or	<u> </u>	
00:30										
00:45										
01:00										
01:15										
01:30										
01:45 02:00										
02:00	╢──╢									
02:30										
02:45										
03:00										
03:15										
03:30										
03:45		1							1	
04:00										
04:15									1	
04:30		1		1		1			1	
04:45										
05:00		1							1	
Steady	Steady ######ded - Un ##### ###### ##### ##### ##### #####								#####	#####
Peak 0.0 0.0 0.0 0.0 0.0 0.0 0.0								0.0	0.00	0.00
Date 27.08.2020	Enginee		tes: HB		Baro	metric F Pressu	e, mbar			
	Equipm	nent	GFM43	30			mp (°C)			0 0

Project Number Project Name Client	C3341 Giddons Gleeds N	•	-	rvices L	td				WS	501
				Det	ection l	Limit				
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppr	Depth of Installation. (mbgl)	Depth of Groundwater (mbg
00:00	<0.1	<0.1	<0.1	20.7	<0.1	<1	<1		2.83	2.80
00:15	<0.1	<0.1	<0.1	20.9	<0.1	<1	<1			
00:30	<0.1	<0.1	<0.1	20.9	<0.1	<1	<1			
00:45	<0.1	<0.1	<0.1	20.9	<0.1	<1	1			
01:00	<0.1	<0.1	<0.1	20.9	<0.1	<1	<1			
01:15	<0.1	<0.1	<0.1	20.9	<0.1	<1	<1			
01:30	<0.1	<0.1	<0.1	20.8	<0.1	<1	<1			
01:45	<0.1	<0.1	<0.1	20.9	<0.1	<1	<1			
02:00	<0.1	<0.1	<0.1	20.8	<0.1	<1	<1			
02:15	<0.1	<0.1	<0.1	20.9	<0.1	<1	<1			
02:30	<0.1	<0.1	<0.1	20.9	<0.1	<1	<1			
02:45	<0.1	<0.1	<0.1	20.9	<0.1	<1	<1			
03:00	<0.1	<0.1	<0.1	20.9	<0.1	<1	<1	└──╁		
03:15	<0.1	<0.1	<0.1	20.9	<0.1	<1	<1			
03:30	<0.1	<0.1	<0.1	20.9	<0.1	<1	<1			
03:45	╫╴╹							┝──┣		
04:00	╫╴							╞╴╴┨		
04:15	╫╴╹							╞╴╴┠		
04:30	╫╴					<u> </u>		╎──╂		I
04:45	╫╶╴┦							┼──╂		
05:00	-01	-0.1	-0.1	20.0	-0.1	-1	-1		2.02	2.00
Steady Peak	<0.1 0.0	<0.1 0.0	<0.1 0.0	20.9 20.9	<0.1 0.0	<1 0.0	<1 1.0	##### 0.0	2.83 2.83	2.80 2.80
Date	<u> </u>						L		2.00	
03.09.2020	Notes Engineer DI		DRS		Barometric Pressure, mbar				1011	
					Pressure Trend				sing	
	Equipm	ient	GFM43	30		Air Te	emp (°C)	1	8

Project Number Project Name Client	C3341 Giddons Gleeds N		•		td				WS	506
				Det	ection I	Limit				
		<0.1 <0.1 <0.1 <0.1 <1 <1 <0.1								
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppr	Depth of Installation. (mbgl)	Depth of Groundwater (mbg
00:00	<0.1	<0.1	<0.1	20.6	0.1	<1	<1		2.90	DRY
00:15	<0.1	<0.1	<0.1	21.0	0.1	<1	1			
00:30	<0.1	<0.1	<0.1	20.9	0.1	<1	1			
00:45	<0.1	<0.1	<0.1	20.9	0.1	<1	3			
01:00	<0.1	< 0.1	<0.1	20.9	0.1	<1	1			
01:15	<0.1	<0.1	<0.1	20.9	0.1	<1	3			
01:30	<0.1	<0.1	<0.1	20.9	0.1	<1	1			
01:45	<0.1	<0.1	<0.1	20.9	0.1	<1	1			
02:00	<0.1	<0.1	<0.1	20.9	0.1	<1	<1			
02:15	<0.1	<0.1	<0.1	20.9	0.1	<1	1			
02:30	<0.1	<0.1	<0.1	20.9	0.1	<1	1			
02:45	<0.1	< 0.1	< 0.1	20.9	0.1	<1	1			
03:00	<0.1	<0.1	<0.1	20.9	0.1	<1	<1			
03:15				-						
03:30	{}	ł								
03:45	╟╴╏							+		
04:00	╢╢									
04:15	╟╴╏									
04:30	╢╢									
04:45	╫╴┨							┼──╂		
05:00										
Steady Peak	<0.1 0.0	<0.1 0.0	<0.1 0.0	20.9 21.0	0.1	<1	<1 3.0	#####	2.90	DRY
L	0.0			21.0	0.1	0.0	5.0	0.0	2.90	0.00
Date 03.09.2020	Engine	Not er	DRS		Baro			e, mbar)11
							ire Trer			sing
	Equipm	ient	GFM43	30		Air Te	emp (°C)	1	.8

Project Number Project Name Client	C3341 Giddons Gleeds N				td				WS	507
				Det	ection l	Limit				
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
Time	Gas Flow Rate. (l/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (pp	Depth of Installation. (mbgl	Depth of Groundwater (mb
00:00	<0.1	<0.1	<0.1	20.8	<0.1	<1	<1		3.72	0.84
00:15	<0.1	<0.1	<0.1	20.8	<0.1	<1	<1			
00:30	<0.1	< 0.1	<0.1	20.6	0.1	<1	<1			
00:45	<0.1	< 0.1	<0.1	20.6	0.1	<1	<1			
01:00	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	20.2	0.1	<1 <1	<1			
01:15 01:30	< 0.1	< 0.1	<0.1	20.1 20.0	0.2	<1	<1 1			
01:45	< 0.1	<0.1	<0.1	19.9	0.2	<1	<1			
02:00	<0.1	<0.1	<0.1	19.9	0.2	<1	<1			
02:15	<0.1	<0.1	<0.1	19.8	0.2	<1	1			
02:30	<0.1	<0.1	<0.1	19.8	0.2	<1	<1			
02:45	<0.1	<0.1	<0.1	19.8	0.2	<1	<1			
03:00	<0.1	<0.1	<0.1	19.8	0.2	<1	<1			
03:15	<0.1	< 0.1	<0.1	19.8	0.2	<1	<1			
03:30	<0.1	<0.1	<0.1	19.8	0.2	<1	<1			
03:45		1		1			1			
04:00		1		İ			İ			
04:15										
04:30				_						
04:45										
05:00										
Steady	<0.1	<0.1	<0.1	19.8	0.2	<1	<1	#####	3.72	0.84
Peak	0.0	0.0	0.0	20.8	0.2	0.0	1.0	0.0	3.72	0.84
Date 03.09.2020	Notes Engineer D		DRS		Barometric Pressure, mbar Pressure Trend				1011	
	F a a b	4	CEN 4 4	20						sing
	Equipm	ient	GFM43	30		Air íe	emp (°C)	1	.8

Project Number Project Name Client		C3341 Giddons Way, Bridgend Gleeds Management Services Ltd Detection Limit							W	S01
				Det	ection l	Limit				
		<0.1 <0.1 <0.1 <0.1 <1 <1 <0.1								
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppr	Depth of Installation. (mbgl)	Depth of Groundwater (mbg
00:00	<0.1	<0.1	<0.1	20.4	0.1	<1	<1		2.83	2.80
00:15	<0.1	<0.1	<0.1	18.9	1.6	1	1			
00:30	<0.1	<0.1	<0.1	18.8	1.6	<1	<1			
00:45	<0.1	< 0.1	<0.1	18.7	1.6	<1	1			
01:00	<0.1	<0.1	<0.1	18.6	1.7	<1	<1			
01:15	<0.1	<0.1	<0.1	18.6	1.7	<1	<1			
01:30	<0.1	<0.1	<0.1	18.5	1.7	<1	<1			
01:45	<0.1	<0.1	<0.1	18.5	1.7	<1	<1			
02:00	<0.1	<0.1	<0.1	18.5	1.8	<1	1			
02:15 02:30	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	18.4 18.4	1.8 1.8	<1 <1	1			
02:30	<0.1	<0.1	<0.1	18.4	1.8	<1	<1		_	
02:45	<0.1	<0.1	<0.1	18.3	1.8	<1	<1			
03:15	\0.1	<0.1	<0.1	18.3	1.9	<1	<1			
03:30	╂╴╴╂	<0.1	<0.1	18.3	1.9	<1	<1			
03:45	╢╢	<0.1	<0.1	18.3	1.9	<1	<1			
04:00	++ +	<0.1	<0.1	18.2	2.0	<1	<1			
04:15		< 0.1	<0.1	18.2	2.0	<1	<1			
04:30		<0.1	<0.1	18.2	2.0	<1	<1			
04:45	11 1	<0.1	<0.1	18.2	2.0	<1	<1			
05:00	┼ ┤	<0.1	<0.1	18.2	2.0	<1	<1			
Steady	<0.1	<0.1	<0.1	18.2	2.0	<1	<1	#####	2.83	2.80
Peak	0.0	0.0	0.0	20.4	2.0	1.0	1.0	0.0	2.83	2.80
Date 10.09.2020	Notes: Engineer DF		tes: DRS		Barometric Pressure, mbar Pressure Trend			1019 Falling		
	Equipm	nent	GFM43	30			emp (°C			16

Project Number Project Name Client		iddons Way, Bridgend leeds Management Services Ltd							WS	506
				Det	ection l	Limit				
		<0.1 <0.1 <0.1 <0.1 <1 <1 <0.1								
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppr	Depth of Installation. (mbgl)	Depth of Groundwater (mbg
00:00	<0.1	<0.1	<0.1	20.5	<0.1	<1	<1		2.90	DRY
00:15	<0.1	<0.1	<0.1	18.8	2.2	<1	<1			
00:30	<0.1	<0.1	<0.1	18.5	2.2	<1	<1			
00:45	<0.1	<0.1	< 0.1	18.4	2.2	<1	<1			
01:00	<0.1	<0.1	< 0.1	18.4	2.2	<1	<1			
01:15	< 0.1	<0.1	< 0.1	18.4	2.3	<1	<1			
01:30	<0.1	<0.1	< 0.1	18.4	2.3	<1	<1			
01:45	< 0.1	<0.1	< 0.1	18.3	2.3	<1	<1			
02:00	<0.1	<0.1	<0.1	18.3	2.3	<1	<1			
02:15	<0.1	<0.1	<0.1	18.2	2.3	<1	<1			
02:30	< 0.1	<0.1	<0.1	18.2	2.4	<1	<1			
02:45	< 0.1	<0.1	<0.1	18.2	2.4	<1	<1			
03:00	<0.1	< 0.1	< 0.1	18.2	2.4	<1	<1			
03:15	╎╎──┤	< 0.1	< 0.1	18.2	2.4	<1	<1			
03:30		<0.1	<0.1	18.2	2.4	<1	<1			
03:45	╂┨──┨	<0.1	<0.1	18.1	2.5	<1	<1	┼──╂	┨──┤]
04:00		<0.1	<0.1	18.1	2.5	<1	<1	┥		
04:15		<0.1	<0.1	18.1	2.6	<1	<1	┼──╂		
04:30		< 0.1	<0.1	18.1	2.6	<1	<1	┼──╂		
04:45 05:00		<0.1 <0.1	<0.1 <0.1	18.0 18.0	2.7 2.7	<1 <1	<1 <1	╞──┨		
Steady	<0.1		<0.1 <0.1					<i></i>	2.00	DBY
Peak	0.0	<0.1 0.0	<0.1 0.0	18.0 20.5	2.7 2.7	<1 0.0	<1 0.0	##### 0.0	2.90 2.90	DRY 0.00
Date	Note:								<u> </u>	
10.09.2020			DRS				rometric Pressure, mbar)19
				Pressure Trend		nd	Fal	lling		
	Equipm	nent	GFM43	30		Air Te	emp (°C)	1	L6

Project Number Project Name Client	C3341 Giddons Gleeds N	-	-		td				WS	507
				Det	ection l	Limit				
		<0.1 <0.1 <0.1 <0.1 <1 <1 <0.1								
Time	Gas Flow Rate. (l/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (pp	Depth of Installation. (mbgl	Depth of Groundwater (mb
00:00	<0.1	<0.1	< 0.1	20.2	<0.1	<1	<1		3.70	0.89
00:15	<0.1	<0.1	<0.1	20.8	0.1	<1	<1			
00:30	<0.1	<0.1	<0.1	20.8	0.2	<1	1			
00:45	<0.1	<0.1	<0.1	20.7	0.2	<1	<1			
01:00	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	20.6 20.5	0.2	<1	1			
01:15 01:30	<0.1	<0.1	<0.1	20.5	0.2	<1 <1	<1 <1			
01:45	<0.1	<0.1	<0.1	20.4	0.2	<1	<1			
02:00	<0.1	<0.1	< 0.1	20.4	0.2	<1	1			
02:15	<0.1	<0.1	<0.1	20.3	0.2	<1	1			
02:30	<0.1	<0.1	<0.1	20.3	0.3	<1	<1			
02:45	<0.1	<0.1	<0.1	20.2	0.3	<1	<1			
03:00	<0.1	< 0.1	<0.1	20.2	0.3	<1	<1			
03:15		<0.1	<0.1	20.2	0.3	<1	<1			
03:30		<0.1	<0.1	20.2	0.3	<1	1			
03:45		<0.1	<0.1	20.2	0.3	<1	1			
04:00		<0.1	<0.1	20.2	0.3	<1	<1			
04:15										
04:30										
04:45										
05:00										
Steady	<0.1	<0.1	<0.1	20.2	0.3	<1	<1	#####	3.70	0.89
Peak	0.0	0.0	0.0	20.8	0.3	0.0	1.0	0.0	3.70	0.89
Date 10.09.2020	Engine	Notes Engineer D		tes: DRS		Barometric Pressure, mbar Pressure Trend)19
										ling
	Equipn	nent	GFM43	30		Air Te	emp (°C)	1	L6

Project Number Project Name Client		Giddons Way, Bridgend Gleeds Management Services Ltd							WS	501
				Det	ection l	Limit				
		<0.1 <0.1 <0.1 <0.1 <1 <1 <0.1								
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppr	Depth of Installation. (mbgl)	Depth of Groundwater (mbg
00:00	<0.1	<0.1	<0.1	20.6	<0.1	<1	<1		2.83	2.79
00:15	<0.1	<0.1	<0.1	20.9	<0.1	<1	1			
00:30	<0.1	<0.1	<0.1	20.8	<0.1	<1	<1			
00:45	<0.1	<0.1	<0.1	20.8	<0.1	<1	1			
01:00	<0.1	<0.1	<0.1	20.8	<0.1	<1	1			
01:15	<0.1	<0.1	<0.1	20.8	<0.1	<1	1			
01:30	<0.1	<0.1	<0.1	20.8	<0.1	<1	<1			
01:45	<0.1	<0.1	<0.1	20.8	<0.1	<1	1			
02:00	<0.1	<0.1	<0.1	20.7	<0.1	<1	<1			
02:15	<0.1	<0.1	<0.1	20.7	0.1	<1	<1			
02:30	<0.1	<0.1	<0.1	20.7	0.1	<1	1			
02:45	<0.1	<0.1	<0.1	20.7	0.1	<1	3			
03:00	<0.1	<0.1	<0.1	20.7	0.1	<1	<1			
03:15	<0.1	<0.1	<0.1	20.7	0.1	<1	<1			
03:30	<0.1	<0.1	<0.1	20.7	0.1	<1	1	╞───┨		
03:45	╫╶						<u> </u>	┟──┟		
04:00	╂┨──┨							╞──┨		
04:15	╫							┝──┠		
04:30	╫╶							╞──┠		
04:45 05:00	╂╴╴╏							$\left \right $		
Steady	-0.1	<0.1	<0.1	20.7	0.1	-1	1.0	######	2 92	2 70
Peak	<0.1	0.0	<0.1 0.0	20.7	0.1	<1 0.0	1.0 3.0	##### 0.0	2.83 2.83	2.79 2.79
Date	Notes									
15.09.2020	Engine		DRS		Baro			e, mbar)15
	F a a b a b a b b b b b b b b b b		CENAR	20			re Tren			sing
	Equipm	ient	GFM43	50		AIr Ie	emp (°C)	4	20

Project Number Project Name Client	C3341 Giddons Gleeds N	•	-		td				WS	506
				Det	ection l	Limit				
		<0.1 <0.1 <0.1 <0.1 <1 <1 <0.1								
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppr	Depth of Installation. (mbgl)	Depth of Groundwater (mbg
00:00	-3.2	<0.1	<0.1	20.7	<0.1	<1	<1		2.91	DRY
00:15	<0.1	<0.1	<0.1	18.5	2.3	<1	1			
00:30	<0.1	<0.1	<0.1	18.6	2.1	<1	<1			
00:45	<0.1	<0.1	<0.1	18.6	2.0	<1	1			
01:00	<0.1	<0.1	<0.1	18.6	2.0	<1	1			
01:15	<0.1	<0.1	<0.1	18.6	2.0	<1	<1			
01:30	<0.1	<0.1	<0.1	18.6	2.0	<1	1			
01:45	<0.1	<0.1	<0.1	18.6	2.0	<1	1			
02:00	<0.1	<0.1	<0.1	18.5	2.0	<1	1			
02:15	<0.1	<0.1	<0.1	18.5	2.1	<1	1			
02:30	<0.1	<0.1	<0.1	18.5	2.1	<1	<1			
02:45	<0.1	<0.1	<0.1	18.4	2.1	<1	1			
03:00	<0.1	<0.1	<0.1	18.4	2.1	<1	<1			
03:15	<0.1	<0.1	<0.1	18.4	2.1	<1	<1			
03:30	<0.1	<0.1	<0.1	18.4	2.1	<1	1			
03:45	<0.1	<0.1	<0.1	18.4	2.1	<1	3			
04:00	╷									
04:15	↓↓ _ ↓	 								
04:30	↓↓ _ ↓	 								
04:45		 								
05:00										
Steady	<0.1	<0.1	<0.1	18.4	2.1	<1	3.0	#####	2.91	DRY
Peak	-3.2	0.0	0.0	20.7	2.3	0.0	3.0	0.0	2.91	0.00
Date 15.09.2020	Engine	Notes Engineer D		tes: DRS		Barometric Pressure, mbar Pressure Trend)15 Sing
	Equipm	ont	GFM43	20			emp (°C		1	20
	Equipm	ient	011143	50			inh (C	1		10

Project Number Project Name Client	C3341 Giddons Gleeds N	•	-		_td				WS	507
					ection	Limit				
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		,
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (pp	Depth of Installation. (mbgl	Depth of Groundwater (mb
00:00	-5.7	<0.1	<0.1	20.4	0.1	<1	<1		3.71	0.84
00:15	-3.3	<0.1	<0.1	20.6	0.2	1	<1			
00:30	-3.0	< 0.1	<0.1	20.5	0.3	<1	<1			
00:45	-3.0	<0.1	<0.1	20.5	0.3	<1	<1			
01:00	-2.8	<0.1	<0.1	20.5	0.3	<1	<1			
01:15	-2.8	<0.1	<0.1	20.5	0.3	1	<1 1			
01:30	-2.8	<0.1 <0.1	<0.1	20.5 20.5	0.3					
01:45 02:00	-2.1 -2.8	<0.1	<0.1 <0.1	20.5	0.3	1 2	<1 1			
02:00	-2.8	<0.1	<0.1	20.5	0.3	<1	1			
02:30	< 0.1	<0.1	<0.1	20.5	0.3	<1	<1			
02:45	<0.1	<0.1	<0.1	20.5	0.3	1	1			
03:00	<0.1	<0.1	<0.1	20.5	0.3	1	<1			
03:15	<0.1	·0.1	10.1	20.5	0.0	-	·-			
03:30	<0.1	1		1						
03:45	<0.1	1								
04:00										
04:15		1				1	1			
04:30										
04:45										
05:00										
Steady	<0.1	<0.1	<0.1	20.5	0.3	1.0	<1	#####	3.71	0.84
Peak	-0.6	0.0	0.0	20.6	0.3	2.0	1.0	0.0	3.71	0.84
Date 15.09.2020	Engine		tes: DRS		Baro		Pressur Jre Trer	e, mbar)15
	Equipm	ent	GFM43	30			emp (°C			sing 20
	Equipri	ient		50			inh (C	·]	4	20

Appendix VIII

CBR Test Results (MEXE Probe)

	-		7	
Job No.	C3341	au Nauth C	II:	
Job Name		ay, North C	ornelli	
Date	7th August	2020		
		MP1		
Position		Depth	n (mm)	
	150	300	450	600
P1	6	14		
P2	7	14		
Р3	13	14		
P4	14			
P5	10	14		
Minimum CBR Value	6.0	14.0		
		MP2		
Position			n (mm)	
	150	300	450	600
P1	8	14		
P2	8	14		
Р3	14			
P4	14			
P5	14			
Minimum CBR				
Value	8.0	14.0		
		MP3		
Desition			(
Position	150	300	n (mm) 450	600
P1	130	300	430	000
P1 P2	14	14		
P3	8	14		
P4	14	14		
P5	14			
Minimum CBR				
Value	8.0	14.0		
		MP4		
Desition			(mm)	
Position	150	300	n (mm) 450	600
P1	7	300 14	430	000
P1 P2	12	14 14		
P2 P3	6	14 14		
P3 P4	14	14		
P4 P5	14	14		
Minimum CBR		14		
Value	6.0	14.0		

If Empty - Means unable to penetrate further due to strata strength

CBR Test Results (MEXE Probe)

	•		/						
Job No.	C3341								
Job Name	Gibbons W	Gibbons Way, North Cornelli							
Date	7th August	7th August 2020							
		MP5							
Position		Depth	(mm)						
	150	300	450	600					
P1	14								
P2	7	14							
Р3	9	14							
P4	8	14							
P5	12	14							
Minimum CBR Value	7.0	14.0							

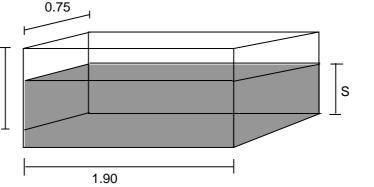
If Empty - Means unable to penetrate further due to strata strength

Appendix IX

INSITU SOAKAWAY TEST RESULTS

Page 1 of 3

Trialpit No.: **SK01**


Soil Profile:

Depth (m)		Description
From:	To:	
0.00	0.25	MADE GROUND - Brown sandy gravelly clayey topsoil.
0.25	0.70	MADE GROUND - Brown and occasionally grey mottled sandy slightly gravelly clay.
0.70	2.30	Firm brown slightly gravelly sandy CLAY.
2.30	3.50	Medium dense greyish brown slightly clayey sandy GRAVEL.

Sketch plan of test zone

Not to scale All dimensions in metres.

porosity (N) = 0.42(measured in laboratory) S= Storage depth (m) 3.50 Water level from 2.41m to 3.50m No Groundwater was encountered

Time

(minutes)

Depth

2.410

2.460 2.47

2.48

2.49

2.52

2.56

2.580

2.62

2.65

2.67

2.76

2.93

2.98

3.04

3.09

3.12

3.16

3.21 3.24

2.810

(m)

0 1

3

5

7

8

12

14

18

22

24

33

39

47

64

73

84

93

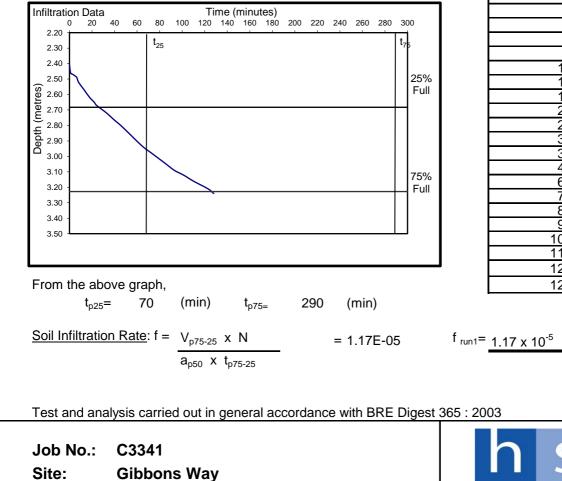
101

110

123

128

m/s


Gives the Figures

S=	1.09	m
a _{p50} =	4.31	m²
V _{p75-25} =	0.78	m³

Soakaway Test Run 1

Client:

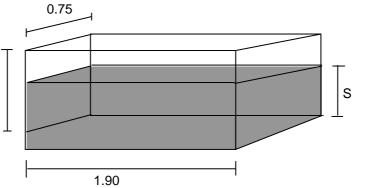
Test Date: 24/08/2020

Gleeds Management Services Ltd

INSITU SOAKAWAY TEST RESULTS

Page 2 of 3

Trialpit No.: **SK01**


Soil Profile:

Depth (m)		Description
From:	To:	
0.00	0.25	MADE GROUND - Brown sandy gravelly clayey topsoil.
0.25	0.70	MADE GROUND - Brown and occasionally grey mottled sandy slightly gravelly clay.
0.70	2.30	Firm brown slightly gravelly sandy CLAY.
2.30	3.50	Medium dense greyish brown slightly clayey sandy GRAVEL.

Sketch plan of test zone

Not to scale All dimensions in metres.

porosity (N) = 0.42(measured in laboratory) S= Storage depth (m) 3.50 Water level from 2.41m to 3.50m No Groundwater was encountered **Gives the Figures**

Time

(minutes)

Depth

2.280

2.290 2.30

2.31

2.32

390

2.43

2.44

2 48

2.60

2.73

2.97

3.07

3.13

3.16

3.22

3.27

m/s

.84

2.660

2 .34

33

(m)

0

1

2

3

5

6

7

15

19

24

29

38

53

66

81

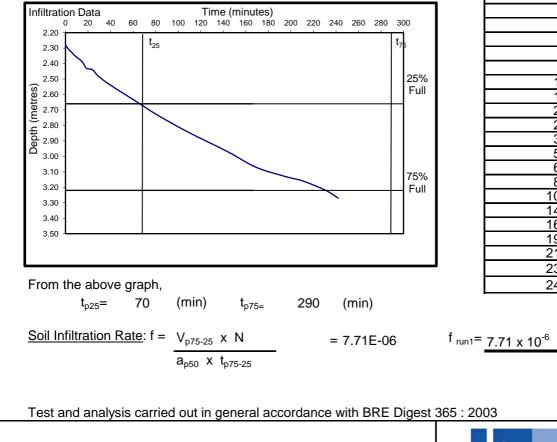
108

144

169

195

211


231

242

Soakaway Test Run 2

S=	1.12	m
a _{p50} =	4.39	m²
V _{p75-25} =	0.80	m³

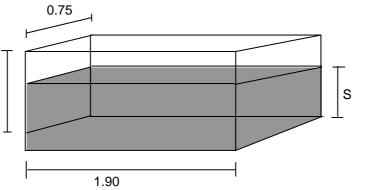
Test Date: 25/08/2020

Job No.: C3341 Site: **Gibbons Way Client: Gleeds Management Services Ltd**

INSITU SOAKAWAY TEST RESULTS

Page 3 of 3

Trialpit No.: SK01


Soil Profile:

Depth (m)		Description
From:	To:	
0.00	0.25	MADE GROUND - Brown sandy gravelly clayey topsoil.
0.25	0.70	MADE GROUND - Brown and occasionally grey mottled sandy slightly gravelly clay.
0.70	2.30	Firm brown slightly gravelly sandy CLAY.
2.30	3.50	Medium dense greyish brown slightly clayey sandy GRAVEL.

Sketch plan of test zone

Not to scale All dimensions in metres.

porosity (N) = 0.42 (measured in laboratory) S= Storage depth (m) 3.50 Water level from 2.41m to 3.50m No Groundwater was encountered **Gives the Figures**

Time

(minutes)

Depth

2.280

2.290 <u>2.3</u>0

2.33

2.39

2.70

2 840

2 99

3.10

3.21

3.29

.59

(m)

0

2

4

10

20

52

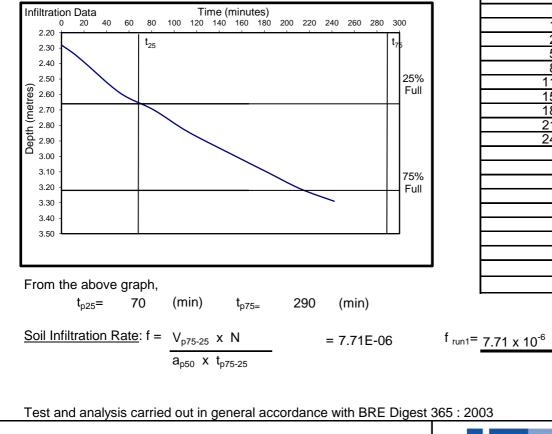
82

112

152

182

212


242

S= 1.12 m $a_{0.50}=$ 4.39 m²

 a_{p50} = 4.39 m^2 V_{p75-25}= 0.80 m^3

Soakaway Test Run 3

Test Date: 25/08/2020

Job No.:C3341Site:Gibbons WayClient:Gleeds Management Services Ltd

m/s

CIVIL | STRUCTURAL | GEOTECHNICAL & ENVIRONMENTAL | TRAFFIC AND TRANSPORT Lawrence House | 6 Meadowbank Way | Nottingham | NG16 3SB 01773 535555 | design@hspconsulting.com | www.hspconsulting.com