SUPPLEMENTARY PHASE II GEO-ENVIRONMENTAL ASSESSMENT REPORT

FINAL

Coleg Sir Gar - Pibwrlwyd Campus

Report Ref: HSP2024-4103-G-GPII-2636

October 2024

CIVIL | STRUCTURAL | GEOTECHNICAL & ENVIRONMENTAL | TRAFFIC AND TRANSPORT

Coleg Sir Gar – Pibwrlwyd Campus Pibwrlwyd Ln Carmarthen SA31 2NH

Supplementary Phase II Geo-Environmental Assessment Report

This report was produced by HSP Consulting Engineers Ltd for WEPco as the Supplementary Phase II GeoEnvironmental Desk Study Report for Coleg Sir Gar (Pibwrlwyd Campus), Carmarthen, to investigate the existing ground conditions and provide information on likely constraints to development, preliminary parameters for design and recommendations for any mitigation measures.

This report may not be used by any person other than WEPco and must not be relied upon by any other party without the explicit written permission of HSP Consulting Engineers Ltd. In any event, HSP Consulting Engineers Ltd accepts no liability for any costs, liabilities or losses arising as a result of the use or reliance upon the contents of this report by any person other than WEPco.

All parties to this report do not intend any of the terms of the Contracts (Rights of Third Party Act 1999) to apply to this report. Please note that this report does not purport to provide definitive legal advice.

Issue & Revision History

Revision	Status	Originated	Checked	Approved	Date
-	FINAL	M. Kent B.Sc. (Hons), FGS	K. Murray BSc (Hons), MSc FGS, MIMMM	H. Pratt B.Eng (Hons), C.Eng, F.Cons.E, M.I.C.E, MI Mgt.	17.10.2024
Document Reference: HSP2024-C4103-G-GPII-2636			Project Number: C4103		

This document is available in hard copy, please contact the author to obtain a copy.

HSP Consulting Engineers Ltd, Lawrence House, 6 Meadowbank Way, Nottingham, NG16 3SB **T** 01773 535 555 **W** www.hspconsulting.com

Contents

1.		Introduction	. 1
	1.1	Background	. 1
	1.2	Client Brief & Scope	. 1
	1.3	Report Objectives	. 1
	1.4	Limitations	. 1
	1.5	Previous Reports	. 2
2.		Review of Existing Information & Geoenvironmental Setting	. 3
	2.1	The Site	. 3
	2.2	Geology	. 4
	2.3	Previous Ground Investigation Reports	. 4
3.		Fieldwork & Factual Information	. 6
	3.1	Exploratory Methods	. 6
	3.2	In-situ Testing	. 6
	3.3	Laboratory Testing	. 6
	3.4	Ground Conditions	. 8
	3.5	Groundwater Levels	. 9
	3.6	Ground Gas Monitoring	. 9
	3.7	Visual and Olfactory Evidence of Contamination	10
4.		Geotechnical Assessment	11
	4.1	Detailed Ground Model	11
	4.2	Earthworks	15
	4.3	Foundations	17
	4.4	Ground Floor Slab	18
	4.5	Excavations	18
	4.6	Concrete Classification	19
	4.7	Pavement Design	19
	4.8	Infiltration Testing	19
	4.9	Hand Excavated Pits for Underground Services	20
5.		Environmental Assessment	22
	5.1	Introduction	22
	5.2	Assessment of Soil Analysis Results	22
	5.3	Human Health Mitigation	23
	5.4	Ground Gas Risk Assessment	24

5.5	5 Water Supply	25
	6 Waste Classification	
	7 Updated Conceptual Site Model	
	Development Constraints	
	References	

Appendices

Appendix I - Site Location Plan

Appendix II - Ground Investigation Layout Plan

Appendix III - Exploratory Hole Logs
Appendix IV - Chemical Analysis Results
Appendix V - Geotechnical Results
Appendix VI - Infiltration Testing

Appendix VII - Plate Bearing Test Results
Appendix VIII - Ground Gas Monitoring Results

Appendix IX - HazWasteOnline™ Waste Classification Results

Appendix X - Exploratory Hole Photographs

Executive Summary

HSP Consulting Engineers Ltd has been commissioned by WEPco to provide a Phase II Geoenvironmental Assessment report providing information on likely constraints to the development of the site, parameters for design and recommendations for any mitigation measures should they be required.

The site is located approximately 2.7km south from the town of Carmarthen and is accessed from Pibwrlwyd Lane. The approximate National Grid Reference for the centre of the site is 241198, 218295.

The ground investigation comprised nine windowless sample boreholes to a maximum depth of 3.60m, two cable percussive boreholes to a maximum depth of 15.00m begl, ten machine excavated trial pits to a maximum depth of 2.50m begl, seven of which were utilised for infiltration testing, three hand excavated pits for utility identification and 5 plate bearing tests for CBR%. The geology of the site generally comprised limited Made Ground, overlying superficial Till deposits over bedrock deposits of the Tetragraptus Beds.

For new builds proposed on the existing college site, it is considered conventional strip or pad foundations could be utilised within the natural deposits designed to a net allowable bearing pressure of 125kN/m² at 1.00m begl increasing to 175kN/m² at 2.00m begl to limit total settlements to 25mm and differential settlements to acceptable limits. Localised deepening may be required where soft/loose deposits are encountered (WS08: 1.00m) and placed within competent strata.

For new builds proposed on the adjacent agricultural field, It is considered conventional strip or pad foundations could be utilised within the natural deposits designed to a net allowable bearing pressure of 125kN/m² at 1.00m begl increasing to 160kN/m² at 2.00m begl to limit total settlements to 25mm and differential settlements to acceptable limits. Localised deepening may be required where soft deposits are encountered (WS104: 1.00m. SPT N value of 7) and placed within competent strata.

The results of sulphate and pH testing carried out on selected soil samples taken during this investigation indicate it is appropriate to adopt a basic Design Sulphate Class of DS-1 together with and Aggressive Chemical Environment for Concrete (ACEC) of AC-1.

From the geotechnical testing undertaken on natural superficial and bedrock deposits, it is considered that the natural shallow strata may require some modification to be suitable for use as engineered. For both material types some samples have been found to be wet of their optimum moisture content and the potential for deterioration during periods of inclement weather should be given consideration. Implementation of stabilisation will aid achieving high compaction criteria and reduce long term settlements.

The screening process for on-site human health receptors show that the GACs, representative of minimal risk for a residential without home grown produce, adopted for a school setting, were exceeded for Arsenic in one Made Ground sample. In areas where buildings or hardstanding are proposed the risk will be negligible as this effectively acts as capping and breaks the Source - Pathway

- Receptor linkage. Should soft landscaping be proposed, a clean cover system may be required, however given the ground conditions underlying the site and limited extent of exceedances, the requirement for a capping system is likely to comprise suitable topsoil / subsoil for a suitable growing medium.

Ground gas monitoring has been undertaken on four occasions. It is considered that Characteristic Situation 1 is appropriate for the site. Based on the UK radon map the site is located within an area where 3% to 5% of the properties are above the action level for radon and therefore basic radon measures will be required for any new development on the site in accordance with BR 211

Testing to the Water UK Suite is beyond the scope of the investigation. However, the use of plastic water supply pipes is likely to be suitable if located in natural ground. However, specific targeted testing may be required by the utility provider once the water supply pipe route(s) have been confirmed.

The executive summary contains an overview of key findings and conclusions. However, no reliance should be placed on the executive summary until the whole of the report has been read. Other sections of the report may contain information which puts into context the findings noted within the executive summary.

1. Introduction

1.1 Background

This supplementary ground investigation and subsequent report has been prepared to aid preliminary design parameters, following an initial ground investigation (completed February 2023) as part of a feasibility study.

1.2 Client Brief & Scope

HSP Consulting Engineers Ltd has been commissioned by WEPco to undertake an intrusive ground investigation at the site to investigate the existing ground conditions and provide information on likely constraints to development, preliminary parameters for design and recommendations for any mitigation measures.

The report presents the following information:

- a summary of the previous Geo-environmental Reports (Section 1.5 below),
- details of the ground investigation undertaken and the ground conditions encountered,
- · details and results of the geotechnical testing and contamination analysis,
- recommendations for mitigating constraints to the proposed development, where appropriate, and providing preliminary parameters for foundation design.

The human health risk assessment reported within Section 5 follows the principals given in the Land Contamination Risk Management (LCRM) Guidance.

Where applicable, the fieldwork was undertaken in accordance with BS5930:2015+A1:2020 Code of Practice for Ground Investigations and BS10175:2011+A2:2017 Investigation of Potentially Contaminated Sites.

1.3 Report Objectives

The objectives of this report are to:

- Establish the geological and hydrogeological conditions using existing available/published information.
- Summarise available information and identify site specific geotechnical and environmental hazards which may place a constraint upon the proposed site use.
- Produce an updated Conceptual Site Model identifying potential pollution linkages between sources of contamination, pathways and receptors.

1.4 Limitations

The recommendations made in this report are based on the findings of the intrusive ground investigation undertaken by HSP Consulting Engineers Ltd between the 12th and 16th August 2024.

1.5 Previous Reports

HSP Consulting Engineers Ltd have previously produced the following reports, which are detailed below:

- HSP Consulting Engineers Limited, Coleg Sir Gar Pibwrlwyd Campus Phase I Geo-Environmental Desk Study Report, November 2022, Ref: HSP2022-C4103-G-GPI-111.1 (Ref 1)
- HSP Consulting Engineers Limited, Coleg Sir Gar Pibwrlwyd Campus Phase II Geo-Environmental Assessment, February 2023, Ref: HSP2023-C4103-G-GPII-1308. (Ref 2)

This Phase II Geo-environmental Assessment should be read in conjunction with the findings of the reports referenced above.

2. Review of Existing Information & Geoenvironmental Setting

2.1 The Site

2.1.1 Location

The site is located approximately 2.7km south from the town of Carmarthen and is accessed from Pibwrlwyd Lane. The approximate National Grid Reference for the centre of the site is 241198, 218295. A Site Location Plan is included in Appendix I.

2.1.2 Description

The site is irregular in shape and is approximately 4.11Ha in area. Vehicle access is gained from the south of the site off Pibwrlwyd Lane, which runs south along the length of the site.

The site is split into two distinct zones with a trackway separating the two zones; the east zone comprises an agricultural field which was fallow at the time of the walkover and the west zone is developed.

The developed area is occupied by Coleg Sir Gar and is comprised of eight mixed storey buildings with associated hardstanding and soft landscaped areas. The buildings are mixed CLASP-style buildings with flat roofs or brick and concrete spray with pitched roof. A large car park is present on the northeast section of the developed area and a smaller car park is present centrally south of the developed area. Two storage container and a skip are present in the small car park.

A topographical survey has been made available for the site (Drawing Ref: 5363/001 dated 02.11.2022). The main college site slopes from northeast (approx. 27m AOD) to southwest (approx. 12m AOD), with a level change up to 15m across the site. The fields to the east also slope from north to south, between approximately 32.5m AOD to approximately 15m AOD, a level change of 17.50m across the site.

The site boundaries are comprised of mixed metal fencing, mature trees and hedgerow.

2.1.3 Surrounding Land Use

The main features of interest identified are:

North: Agricultural fields. East: Agricultural fields.

South: Coleg Sir Gar and residential housing.

West: A484, residential housing and agricultural fields.

2.1.4 Proposed End Use

Detailed proposed development plans have not been provided at this stage, but it is understood that redevelopment is planned including demolition of the existing school block to be replaced with a new build. Additional buildings are proposed on the unoccupied field to the east of the existing college campus. The site will remain a college.

2.2 Geology

2.2.1 Made Ground

According to BGS mapping, Made Ground is not expected to be encountered on the site. However, there is potential for limited Made Ground to be present on site associated with the existing development.

2.2.2 Superficial Deposits

BGS mapping shows the site is underlain by Till in the east of the site and Glaciofluvial Deposits in the west of the site. Till is described as Diamicton. Glaciofluvial Deposits are characterised by sand and gravels.

2.2.3 Bedrock Geology

BGS bedrock mapping indicated the site is underlain by Tetragraptus Beds - Mudstone of the Ordovician Period. No description has been provided by the BGS.

2.3 Previous Ground Investigation Reports

HSP Consulting Engineers Limited – Phase II Geo-Environmental Assessment, February 2023

Summary of Ground Conditions

The investigation was limited to the main college campus, with no investigation undertaken on the agricultural fields to the east of the campus.

The ground investigation comprised twelve windowless sample boreholes to a maximum depth of 4.00m begl and three cable percussive boreholes to a maximum depth of 6.60m begl.

The ground conditions across the site encountered limited Made Ground over superficial Glaciofluvial deposits overlying bedrock deposits of the Tetragraptus Beds.

Shallow Made Ground was encountered in areas where development had occurred. These locations generally comprised asphalt concrete and/or grey gravel cover over dark grey black/grey sandy gravelly silty clayey fill to a maximum depth of 0.50m begl. The gravels were composed of ballast, sandstone, mudstone and asphalt concrete. The base of all Made Ground deposits were penetrated.

Topsoil was encountered in areas of soft landscaping and comprised of grass overlying brown sandy slightly gravelly CLAY with occasional rootlets to a maximum depth of 0.30m begl.

Superficial Glaciofluvial deposits were encountered in all boreholes. A soft to firm brown/light grey/light yellowish brown mottled grey silty CLAY with variable coarse content was encountered underlying any Made Ground or topsoil and proved to a maximum depth of 3.70m begl. The gravels were composed of sandstone, mudstone, siltstone, shale and flint.

In WS06 a loose to medium dense brown SAND was encountered from 0.50m to 2.00m begl, interbedded with clayey slightly sandy mudstone gravel. A loose light brown mottled grey slightly clayey very gravelly SAND was encountered in WS07, WS08 and WS11 from 0.90m to 2.00m begl.

Bedrock deposits of the Tetragraptus Beds were encountered below the Glaciofluvial deposits in CP01A, CP02, CP03, WS04, WS05, WS09 and WS12. The Tetragraptus beds were encountered as very weak to weak weathered dark grey MUDSTONE interbedded with stiff to very stiff brown to dark grey sandy gravelly CLAY from 0.40m begl in WS05 in the northeast and from 3.70m begl in WS09 in the south. The base of the deposits were proven to the base of the boreholes (maximum depth 6.60m begl).

During the advancement of the window sample boreholes, groundwater was encountered at 1.00m begl in WS11. No groundwater was encountered in the cable percussive boreholes. Groundwater monitoring was undertaken on six occasions and groundwater was recorded between 1.52m begl to 3.90m begl.

3. Fieldwork & Factual Information

The site work was carried out between the 12th and 16th August 2024. Where applicable, the fieldwork was undertaken in accordance with BS5930:2015 + A1:2020 Code of Practice for Ground Investigations (Ref. 7) and BS10175:2011+A2:2017 Investigation of Potentially Contaminated Sites (Ref. 9).

The exploratory holes were positioned by Hydrock, as detailed on drawing CSG-HYD-XX-XX-DR-S-0101-P01 – Site Constraints Plan. Locations may have altered slightly subject to access / underground services. The Ground Investigation Layout Plan can be found with Appendix II.

3.1 Exploratory Methods

The exploratory methods are detailed in the table below.

Table 3.1.1 - Exploratory Methods

Type	Quantity	Maximum Depth (m)	Details
Windowless Sampling Borehole	9	3.60	WS101 to WS109
Rotary Open Borehole	2	15.00	RO101 to RO102
Hand Excavated Trial Pit for Utilities	3	1.20	TP101 to TP103
Machine Excavated Trial Pit	3	2.50	TP104 to TP106
Machine Excavated Trial Pit for Infiltration Testing	7	1.90	SA201 to SA207
Plate Bearing Tests	5	0.50	CBR01 to CBR05

The exploratory holes were logged and sampled by an Engineer from HSP Consulting Engineers Ltd and the logs are presented in Appendix III. The exploratory hole locations are shown on the Ground Investigation Layout Plan presented in Appendix II.

Fragmentary bulk disturbed and undisturbed samples were recovered from materials revealed within all the exploratory holes. Geo-environmental samples, placed in plastic tubs and glass jars supplied by the laboratory, were also obtained specifically for chemical analysis. The samples were taken to UKAS accredited laboratories for further examination and testing.

3.2 In-situ Testing

3.2.1 Standard Penetration Tests

Standard Penetration Tests (SPTs) were carried out at 1.00m intervals in the windowless sample and rotary open boreholes to 5.00m depth, and at 1.50m intervals thereafter in the rotary open boreholes. The SPTs were undertaken in accordance with EN ISO 22476-2 2005: A1 2011 and the results are included on the appended borehole logs (Appendix III).

3.3 Laboratory Testing

The laboratory testing schedules were prepared by HSP Consulting Engineers Ltd.

3.3.1 Geotechnical Testing

Geotechnical testing has been scheduled to be undertaken by a UKAS accredited laboratory as part of the works at the site:

- Particle size distributions (PSD)
- Natural Moisture Contents
- Plasticity Index
- Maximum Dry Density / Optimum Moisture Content Relationship
- Recompacted Lab CBR%
- BRE Sulphate Testing Suite D
- Particle Density

The laboratory testing was carried out by Geolabs (UKAS accredited, laboratory No.1982) in accordance with BS 1377-2:2022, BS EN ISO 17892-12:2018+A2:2022, BS EN ISO 17892-3:2015 and 17892:2016-4:2016 using calibrated equipment specifically for the British Standard.

Please note that three samples scheduled for Maximum Dry Density / Optimum Moisture Content Relationship testing were considered not applicable due to more than 10% of the samples retained on the 37.5mm sieve. The samples were tested but a note is included within the report, listing the samples as 'Zone X non – standard test'. The samples are listed below;

SA201: 0.80m - 1.10m
SA205: 0.40m - 0.60m
SA206: 0.90m - 1.20m

3.3.2 Chemical Analysis

The geo-environmental samples retained specifically for chemical analysis were stored in cooled containers until delivery to the laboratory by courier.

Chemical analysis was scheduled on twelve soil samples for the presence of a selected suite of potential contaminants as outlined in the tables below:

Table 3.3.1 - Chemical Analysis

Exploratory Hole Location & Depth (m)	Sample Description	Exploratory Hole Location & Depth (m)	Sample Description
SA201: 0.10m - 0.20m	MADE GROUND 1, 2, 3	WS103: 0.05m - 0.15m	TOPSOIL 1, 2
SA202: 0.20m – 0.30m	TOPSOIL 1, 2	WS104: 0.10m - 0.20m	TOPSOIL 1, 2
SA205: 0.10m – 0.20m	TOPSOIL 1, 2, 4	WS105: 0.40m – 0.50m	CLAY 1, 2
HDP2: 0.10 – 0.20 (in location of SA205)	TOPSOIL ⁵	WS107: 0.10m – 0.20m	TOPSOIL 1, 2, 4, 5
SA206: 0.05m – 0.10m	TOPSOIL 1, 2	WS109: 0.40m - 0.50m	CLAY 1, 2
WS101: 0.20m - 0.30m	TOPSOIL 1, 2	TP104: 0.10m – 0.20m	TOPSOIL 1, 2, 4, 5

¹ HSP Standard Suite, ² Organic Matter, ³ Asbestos Screen ⁴ Pesticides Suite, ⁵ BS3882 Topsoil Suite

Table 3.3.2 – HSP Standard Chemical Analysis Suite

Table 6.6.2 The Standard Chemical Analysis Gate						
Metals	Lead	Mercury	Nickel			
	Zinc	Antimony	Vanadium			
Semi Metals and Non-Metals	Arsenic	Boron	Selenium			
Others	рН	Organic Matter	LOI			

Inorganic Chemicals	Cyanide	Sulphate	Sulphide
Organic Chemicals	PAH (US EPA 16)	TPH (CWG)	Phenol

The contamination analysis was carried out by Chemtest Ltd (UKAS accredited, laboratory No. 2183) during the period 22nd August to 13th September 2024. An additional sample of topsoil was obtained (HDP2, locality of SA205) on the 19th of September, the analysis of which was carried out during the period 24th September to 4th October 2024. All of the results are presented in Appendix IV.

3.4 Ground Conditions

3.4.1 Published Geology

The published geology indicates the site is underlain by Glaciofluvial deposits in the west of the site and Glacial Till in the east of the site. The site is underlain by undifferentiated bedrock deposits of the Tetragraptus Beds.

3.4.2 Ground Conditions Encountered

The exploratory hole data generally confirms the published information with Glacial Till deposits overlying Tetragraptus Beds being encountered in all the exploratory locations. The previous ground investigation on the main college site encountered superficial Glaciofluvial Deposits over the Tetragraptus Beds. The strata encountered as part of this investigation generally comprises:

Table 3.4.1 – Encountered Ground Conditions

Table	Strata	Depth	Thickness	Description
	Strata	(mbegl)	(m)	Description
		G.L – 0.30	0.30	Grass over dark brown / black clay (topsoil) with aggregate, asphalt and coal
		0.30 - 0.70	0.40	Dark brown sandy gravelly clay with brick and plastic
Anthropogenic	MADE GROUND	0.15 – 0.70	0.30	Orange brown mottled grey gravelly sandy clay (reworked natural)
Anthro		0.35 – 1.80	> 1.45	Dark grey clayey sandy GRAVEL and COBBLES (reworked natural)
	TOPSOIL G.L - 0.40 0.40		0.40	Grass over dark brown / brown sandy gravelly CLAY (TOPSOIL) with quartzite, mudstone, sandstone and coal fragments.
Superficial	GLACIAL TILL	0.25 – 1.90	1.20	Firm to stiff yellow / orange brown mottled grey sandy gravelly silty CLAY (low cobble content) with mudstone and coal fragments.
Sup		0.60 – 2.50	0.80	Soft pale grey / brown mottled orange silty sandy CLAY with mudstone.
Bedrock		1.60 – 3.55	1.95	Firm dark grey gravelly silty CLAY (with occasional cobbles and boulders)
	TETRAGRAPTUS BEDS	2.10 – 3.60	1.45	Weathered MUDSTONE recovered as dark grey (with orange staining) clayey GRAVEL of mudstone
Ш		3.60 – 15.00	11.40	MUDSTONE / SANDSTONE (drillers description)

3.5 Groundwater Levels

No groundwater was noted during the advancement of the exploratory holes, with the exception of WS109 where groundwater was recorded at approximately 2.00m begl. Post groundwater monitoring has been completed on four occasions. Within RO101 (visits 2 to 4) and WS107 (visit 4), the borehole was flooded. On both occasions the borehole was bailed with 10-20 litres of water removed and was noted to recharge immediately.

The groundwater levels recorded in the recently installed monitoring wells, are detailed in the table below; Please note that the wells installed as part of the former ground investigation were located but could not be opened (locking mechanism seized).

Table 3.5.1 – Groundwater Levels (mbgl)

Borehole No.	Installation				
Borenole No.	Depth (m)	28.08.24	05.09.24	12.09.2024	19.09.2024
RO101	5.00	0.65	G.L	G.L	G.L
RO102	5.00	3.91	4.02	3.30	4.30
WS107	3.00	0.60	0.56	0.34	0.45
WS109	3.00	1.51	1.50	1.32	1.55

Table 3.5.2 – Groundwater Levels (mAOD)

Borehole No.	Level AOD (m)				
Borellole No.	Level AOD (III)	28.08.24	05.09.24	12.09.2024	19.09.2024 22.34 17.76
RO101	22.34	21.69	22.34	22.34	22.34
RO102	22.06	18.15	18.04	18.76	17.76
WS107	16.17	15.57	15.57	15.83	15.72
WS109	18.42	16.91	16.92	17.10	16.87

3.6 Ground Gas Monitoring

Ground gas monitoring installations were constructed within two of the windowless sample boreholes (WS107 & WS109) and two rotary boreholes (RO101 and RO102). Each well has been constructed using 50mm diameter HDPE pipe. All of the borehole installations have a 6mm pea gravel surround to the slotted pipe with a bentonite seal above and a gas tap. The covers are cemented flush with ground level and are round lockable stopcock covers with the exception of RO101, which has a raised 'tophat' cover.

Please note that the wells installed as part of the former ground investigation were located but could not be opened (locking mechanism seized).

The ground gas monitoring was undertaken utilising GFM 436 Gas Analyser. Prior to its use, a calibration check is performed against gas readings in air. This check is undertaken once on each day the analyser is used. Annual calibration is undertaken on the unit and a copy of this certificate has been included within Appendix VIII.

The results of the ground gas monitoring are discussed in Section 5.5 below.

3.7 Visual and Olfactory Evidence of Contamination

No visual or olfactory evidence of contamination was noted during the intrusive works.

4. Geotechnical Assessment

4.1 Detailed Ground Model

For the purpose of this geotechnical assessment, the information gained from all exploratory holes has been utilised. The exploratory logs are presented in Appendix III.

4.1.1 Made Ground

Made Ground materials were encountered within SA201, located within soft landscaping in the main college car park and comprised topsoil with anthropogenic materials (aggregate and asphalt) overlying a reworked clay with brick and plastic to a maximum depth of 0.70m begl.

Made Ground was also recorded within SA206 and SA207, in the college southern car park. The trial pits encountered reworked material, comprising grass over sandy gravelly clay (topsoil), overlying orange brown sandy gravelly clay (reworked glacial till), underlain by reworked bedrock deposits, comprising dark grey sandy clayey gravels and cobbles of mudstone. The base of the Made Ground was not penetrated as the pits were utilised for infiltration testing.

No Made Ground materials were recorded within the field adjacent to the college.

4.1.2 Topsoil

The remaining exploratory locations were within soft landscaping, predominantly in the field to the east of the college campus, but also in the garden area of the on site dwelling (SA202) and within the southern car park (SA206 & SA207). The surface covering in the area comprised grass overlying dark brown grass over dark brown / brown sandy gravelly CLAY (TOPSOIL) with quartzite, mudstone, sandstone and coal fragments to varying depths (but a maximum of 0.40m begl).

4.1.3 Till Deposits

Below any topsoil or Made Ground the deposits are considered representative of superficial Glacial Till deposits, comprising generally soft to firm becoming stiff yellow/orange brown slightly gravelly CLAY with varying quantities of sand / cobbles. The gravel / cobble inclusions were noted to be subangular to subrounded of grey mudstone.

The depth of the superficial deposits varied. Within the field to the east of the campus, the base of the Till deposits were encountered at all exploratory hole locations, the base proved to depths between 1.60m and 2.70m begl.

4.1.4 Tetragraptus Beds

The bedrock deposits of the Tetragraptus Beds generally comprised weathered MUDSTONE recovered as dark grey (with orange staining) clayey GRAVEL, the base of which was not penetrated. Within TP106 and WS106, the deposits appeared more weathered and comprised a firm dark grey slightly gravelly silty CLAY, between 1.60m and 3.55m before grading into the weathered mudstone described above.

All windowless sample borehole refused on the bedrock deposits between 2.45m and 3.60m begl (SPT N Value of >50).

The bedrock deposits were not encountered within SA201 or SA202, which were excavated to 1.70m –1.90m depth for infiltration testing.

4.1.5 In-situ Testing and Assessment

A series of Standard Penetration Tests (SPT's) were undertaken within the boreholes. The following tables summarise the N values at depth across the site for the windowless sample and rotary boreholes.

Table 4.1.5a – Supplementary Investigation (2024) SPT N Values

Depth (m)	Range of 'N' Values	Mean 'N' Value	Description
1.00	7 - 47	18	CLAY
	15 – 32	20	CLAY
2.00	12 – 50	37	Weathered MUDSTONE and MUDSTONE
3.00	29 – 36	32	CLAY
3.00	19 – 50	45	Weathered MUDSTONE and MUDSTONE
4.00 - 14.50	50	50	MUDSTONE

The below table shows the SPT 'N' Value results from the previous ground investigation.

Table 4.1.5b - Previous Investigation (2022) SPT N Values

Depth (m)	Range of 'N' Values	Mean 'N' Value	Description
1.00	7 – 33	16	CLAY
	50	50	MUDSTONE
2.00	14 – 43	28	CLAY
	17 - 19	18	SAND
	50	50	MUDSTONE
3.00	38 – 50	44	CLAY
	16 – 50	33	MUDSTONE
4.00	17	17	CLAY
	50	50	MUDSTONE
5.00	28	28	CLAY
6.50 - 60	50	50	MUDSTONE

4.1.6 Summary of Geotechnical Laboratory Test Results

The results can generally be classified into two main categories, the superficial glacial deposits and the bedrock deposits of the Tetragraptus Beds.

4.1.7 Superficial Deposits

Ten Particle Size Distribution analysis tests were conducted on the superficial deposits and confirmed the visual description and engineering behaviour of the soils.

The results of two particle density tests within the materials recorded values between 2.66Mg/m³ and 2.72Mg/m³.

Compaction tests to obtain maximum dry density and optimum moisture content relationships were undertaken on nine representative samples using a 2.5kg rammer and 4.5kg rammer.

The testing recorded optimum moisture contents of between 8.7% and 18.9% and maximum dry densities between 1.71Mg/m³ and 2.12Mg/m³.

Hand Shear Vanes were undertaken on six samples, with results ranging between 35kPa and 95kPa.

Fifteen plasticity index and moisture content tests have been undertaken in the laboratory on disturbed samples obtained during the investigation. The results received indicate compliance with the definition of soils of low (CL) to medium (Cl / Ml) plasticity after the classification system of BS5930: 2015 + A1:2020. The samples are considered to be a mixture of low volume change potential and non-shrinkable (for results with a modified Pl below 10%) in accordance with the National House Building Council (NHBC) Standards, Chapter 4.2: 2019.

Table 4.1.7a - Plasticity and Volume Change Potential

Sample Ref:	Laboratory Material	LL	PL	PI	%	Modified	Soil	MC (%)
	Descriptions	(%)	(%)	(%)	passing 425µm	PI (%)	Class	
SA201: 0.80m – 1.10m	Brown slightly sandy gravelly clayey SILT with rare cobbles and roots.	39	28	11	59	6.49	МІ	13.5
SA202: 0.50m – 0.90m	Yellowish brown sandy gravelly silty CLAY with rare rootlets and cobbles.	35	20	15	69	10.35	CL	10.6
SA203: 0.70m – 1.00m	Dark grey slightly sandy slightly gravelly silty CLAY.	33	19	14	92	12.88	CL	20.1
SA204: 0.60m – 1.00m	Grey mottled brown slightly sandy silty CLAY.	28	16	12	96	11.52	CL	18.6
SA205: 0.40m – 0.60m	05: 0.40m – Dark brown sandy silty clayey		25	18	20	3.6	CI	11.1
SA206: 0.40m – 0.70m	Dark brown mottled grey fine sandy gravelly silty CLAY (REWORKED).	49	27	22	35	14.3	CI	21.5
TP104: 1.00m – 1.50m	Dark brown sandy silty gravelly CLAY with rare cobbles.	44	23	21	44	9.24	CI	12.4
TP105: 0.70m – 1.10m	Yellowish brown slightly sandy slightly gravelly silty CLAY.	44	25	19	88	16.72	CI	20.2
TP105: 2.20m – 2.50m	Dark brown sandy silty gravelly CLAY with rare cobbles.	33	20	13	37	4.81	CL	14.1
TP106: 0.70m – 1.00m	Dark brown mottled grey sandy gravelly silty CLAY.	49	23	26	67	17.42	CI	15.6
WS101: 1.50m – 1.80m	Brownish grey slightly gravelly sandy silty CLAY with rare roots.	24	15	9	99	8.91	CL	15.6
WS105: 1.00m – 1.50m	Brownish grey slightly gravelly sandy silty CLAY.	31	21	10	76	7.6	CL	14.3
WS105: 2.00m – 2.30m	Brown slightly gravelly sandy silty CLAY.	26	18	8	88	7.04	CL	18.2
W\$107: 1.00m - 1.50m	Greyish brown slightly gravelly slightly sandy silty CLAY with rare roots.	42	25	17	98	16.66	CI	25.5
WS108: 1.30m – 1.60m	Brownish grey slightly gravelly slightly sandy silty CLAY with rare roots.	29	18	11	98	10.78	CL	15.6

4.1.8 Materials Suitability - Superficial Deposits

Ten particle size distributions were undertaken on the Superficial Deposits, six of which conform to a 2C Stony Cohesive Material classification in accordance with Series 600 of the

'Specification for Highways Works'. The remaining four tests conform to a 2A/2B Cohesive Material classification.

Of the four gradings which conform to the 2A/2B classification, three exhibit a moisture content which is greater than the acceptable limit, indicating conformance with 2A Wet Cohesive Material. The remaining sample conforms to a 2B Dry Cohesive Material.

Compaction tests to obtain maximum dry density and optimum moisture content relationships were undertaken on nine samples of the Superficial Deposits, as described above.

Of the nine tests completed, four had moisture contents within +3% of the optimum moisture content. From the remaining five samples, four samples had moisture content between 3.2% and 9.5% percent higher than the optimum moisture content and one sample had a moisture content of 2.6% lower than the optimum. The above suggests modification may be required to bring the soils within acceptable limits.

Nine recompacted CBR tests were undertaken on bulk samples from the mechanically excavated trial pits. All samples were tested at 'optimum moisture content' from the relevant compaction curve. The results ranged between 1.2% and 70% for the cohesive soils deposits and between 98% and 112% for the granular deposits.

4.1.9 Bedrock Deposits

Please note that Made Ground was encountered with SA206 and SA207, which appeared to be reworked natural bedrock deposits, which have been included within these results.

Seven Particle Size Distribution analysis tests were conducted on the bedrock deposits and confirmed the visual description and engineering behaviour of the soils.

The results of two particle density tests within the materials recorded values of 2.73g/m³.

Compaction tests to obtain maximum dry density and optimum moisture content relationships were undertaken on three representative samples using a 2.5kg rammer and 4.5kg rammer. The testing recorded optimum moisture contents of between 8.0% and 9.9% and maximum dry densities between 2.02Mg/m³ and 2.17Mg/m³.

Five plasticity index and moisture content tests and two additional moisture contents have been undertaken in the laboratory on disturbed samples obtained during the investigation. The results received indicate compliance with the definition of soils of low (CL) to medium (Cl) plasticity after the classification system of BS5930: 2015 + A1:2020. The samples are considered to be non-shrinkable (for results with a modified PI below 10%) with one sample showing low volume change potential in accordance with the National House Building Council (NHBC) Standards, Chapter 4.2: 2019.

Table 4.1.7b - Plasticity and Volume Change Potential

Sample Ref:	Laboratory Material Descriptions	LL (%)	PL (%)	PI (%)	% passing 425µm	Modified PI (%)	Soil Class	MC (%)
SA206: 0.90m – 1.20m	Dark grey clayey silty sandy GRAVEL with some cobbles and bitumen pieces.	39	22	17	21	3.57	CI	8.9
SA207: 1.00m	Dark brown slightly sandy slightly clayey silty GRAVEL and COBBLES.	46	26	20	12	2.4	CI	5.5
TP104: 2.10m – 2.50m	Dark brown mottled yellow sandy gravelly silty CLAY.	34	20	14	30	4.2	CL	15.3
TP106: 2.00m – 2.50m	Dark grey mottled brown gravelly slightly sandy silty CLAY.	43	23	20	51	10.2	CI	11.8
WS102: 2.40m – 2.70m	Dark brown slightly clayey silty very sandy GRAVEL.		7.0					
WS104: 2.50m – 2.80m	Dark brown slightly clayey silty sandy GRAVEL.	49	27	22	9	1.98	CI	8.5
WS106: 2.50m – 3.00m	Dark grey sandy gravelly silty CLAY		9.1					

The geotechnical laboratory results are included in Appendix V.

4.1.10 Materials Suitability - Bedrock Deposits

Seven particle size distributions were undertaken on the weathered bedrock deposits (including the reworked material within SA206 & SA207), four of which conform to a 2C Stony Cohesive Material classification in accordance with Series 600 of the 'Specification for Highways Works'. The remaining three tests conform to either 1A Well Graded Granular Material or 1B Uniformly graded granular material, subject to further testing.

Compaction tests to obtain maximum dry density and optimum moisture content relationships were undertaken on three of the samples, as described above.

Of the three tests completed, two had moisture content within 3% of the optimum moisture content. The remaining sample had a moisture content 5.4% higher than the optimum moisture content. The above suggests modification may be required to bring the soils within acceptable limits.

Three recompacted CBRs were undertaken on bulk samples from the mechanically excavated trial pits. All samples were tested at 'optimum moisture content' from the relevant compaction curve. The results ranged between 25% and 34% for the cohesive deposits and between 11% and 13% for the granular deposits.

4.2 Earthworks

A cut and fill drawing has not been provided at this stage but given the elevation change across the site, significant reprofiling is likely to be required.

As highlighted in sections 4.1.7 to 4.1.10 geotechnical testing was completed on the two different geological units present on the site, superficial glacial till deposits and bedrock

geology of the Tetragraptus Beds. From the testing summarised above, it is considered that the natural shallow strata may require some modification to be suitable for use as engineered.

For both sets of material some samples have been found to be wet of their optimum moisture content and the potential for deterioration during periods of inclement weather should be given consideration. Implementation of stabilisation will aid achieving high compaction criteria and reduce long term settlements. Specific details should be discussed with specialist contractors.

Care should be taken to ensure that fill materials are consistent in any earthworks and there is apparent variability within the natural materials. Where obvious inconsistencies are apparent within excavated soil sources for engineered fill they should be deposited in such a way that all parts of the site receive roughly equal amounts of a given material, in roughly the same sequence, thus ensuring a uniform distribution of fill types over the whole fill thickness. The difficulties of managing this would be compounded if stabilisation is not implemented with potential double handling and stockpiling of materials for drying, mixing, and placement. These activities could all also impact significantly upon any proposed construction programme.

Excavated soils should be visually inspected and physically/mechanically sorted to remove any significant extraneous items which would otherwise determine the soils as unsuitable.

Options for modification are not limited to binders. The addition of binders may be an option however it is not certain, and subject to testing. Discussions should be held with specialists, where additional testing for sulphates, swell & consumption, slag expansivity and others may need to be determined to allow an assessment to be made to demonstrate that the materials are suitable for treatment with binders and chemical heave will not exceed acceptable limits.

Programming of earthworks (including modification) will need to be mindful of adverse weather conditions particularly over the winter months. For any materials being placed as general or engineered fill, placement and compaction would need to be strictly controlled and supervised. Project programming should consider the 'earthworks window' (prevailing dry & warm climatic conditions) as the fine soil materials will be susceptible to softening during periods of wet weather and will be easily damaged by site traffic and deterioration at times of heavy rainfall. We would strongly recommend to, limit the risk to programme and budget, that earthworks are only programmed within the earthworks window, which is weather dependant, usually mid-March to mid-September.

In some areas, particularly the agricultural field to the east of the existing college, a surface scrape will be required at the site to remove scrub/vegetation as these soils will not meet the requirements of general fill for an earthworks specification.

Please note that a cut and fill drawing has not been provided at this stage. The above assessment should be reviewed in conjunction with a proposed cut and fill plan once available to confirm the assessment.

4.3 Foundations

Final development plans have not been provided at this stage, but it is understood that new buildings are proposed on the existing college site (following some demolition) and on the adjacent field to the east. The assessment has been split into the existing college site (west) and the adjacent field to the east, where it is understood that new buildings are proposed.

Existing College Site (West)

For the purpose of this foundation assessment, the information gained from the previous ground investigation (windowless sample and cable percussive boreholes) has been utilised, supplemented with RO102 as part of this investigation.

Based on the ground conditions encountered, the general downward succession was identified as shallow Made Ground overlying varying depth of superficial Glaciofluvial deposits (proved to depths of 0.4m begl (WS05) and 3.7m begl (WS09), overlying bedrock deposits of the Tetragraptus beds comprising clay/mudstone. The topography of the site varies being at a higher elevation in the northeast, sloping down to the southwest.

All foundations will need to be taken below any topsoil and Made Ground materials as these are not considered a suitable founding stratum.

It is considered conventional strip or pad foundations could be utilised within the natural deposits designed to a net allowable bearing pressure of 125kN/m² at 1.00m begl increasing to 175kN/m² at 2.00m begl to limit total settlements to 25mm and differential settlements to acceptable limits. Localised deepening may be required where soft/loose deposits are encountered (WS08: 1.00m) and placed within competent strata.

Where fine-grained and granular deposits are encountered at the base of any footings, consideration should be given to the inclusion of mesh reinforcement at the top and bottom of foundations to reduce the potential for differential settlements to occur.

Adjacent Agricultural Field (East)

For the purpose of this foundation assessment, the information gained from the supplementary investigation (windowless sample and rotary open boreholes) has been utilised.

Based on the ground conditions encountered, the general downward succession was identified as Topsoil overlying varying depth of superficial Glacial Till deposits (proved to depths of 1.60m begl (WS106) and 2.70m begl (WS105/WS107), overlying bedrock deposits of the Tetragraptus beds comprising clay/mudstone. The topography of the site varies being at a higher elevation in the north, sloping down to the south significantly (approximately 16m – 17m level change across the site).

All foundations will need to be taken below any topsoil and Made Ground materials as these are not considered a suitable founding stratum.

It is considered conventional strip or pad foundations could be utilised within the natural deposits designed to a net allowable bearing pressure of 125kN/m² at 1.00m begl increasing to 160kN/m² at 2.00m begl to limit total settlements to 25mm and differential settlements to acceptable limits. Localised deepening may be required where soft deposits are encountered (WS104: 1.00m. SPT N value of 7) and placed within competent strata.

No granular deposits were recorded on the agricultural field but should fine-grained and granular deposits be encountered at the base of any footings, consideration should be given to the inclusion of mesh reinforcement at the top and bottom of foundations to reduce the potential for differential settlements to occur.

Foundations (and ground floor slabs) should be designed in accordance with NHBC Standards Chapter 4.2 Building near Trees (Ref. 10) in accordance with the requirements for soils of medium-volume change potential.

It should be noted that design loadings have not been provided at this stage. If proposed loadings are likely to exceed the ABP provided above, an alternative foundation solution such as piling would need to be considered where higher loads are required. Any piling solution would need to be designed and warranted by a specialist subcontractor.

Please note that a cut and fill drawing has not been provided at this stage. The foundation assessment does not take into account any proposed cut and fill levels which may determine more favourable ABP should founding depths be within the mudstone strata of the Tetragraptus Beds. The foundation assessment should be reviewed once proposed levels are known.

4.4 Ground Floor Slab

At this stage it is anticipated a cut/fill exercise will be required to accommodate any new build across both areas and in conjunction with any earthworks reprofiling a ground bearing floor slab could be considered providing granular material is placed beneath the floor slab and compacted in layers in accordance with any engineered specification. Alternatively, a suspended floor slab could be utilised or a suspended floor slab should also be adopted in conjunction with a piled foundation solution if required.

Where the structures are to be located within the influencing zone of existing or future trees, they should be designed in accordance with NHBC guidance Chapter 4.2.

Any floor slab design will need to accommodate basic radon protection measures in accordance with BR 211, BRE 2015 (Ref 25).

4.5 Excavations

Excavations to proposed formation level for new foundations and infrastructure should be feasible using standard excavation plant and equipment. Random and potentially severe falls

should be anticipated from the faces of near vertically sided unsupported excavations carried out at the site.

Where personnel are required to enter near vertically sided excavations, it is considered that full support should be provided to the full depth of all excavations.

It is recommended that all support systems are continually assessed by fully trained or experienced personnel.

Limited groundwater was recorded during the intrusive works. Post investigation monitoring has recorded groundwater at shallow levels which had constant recharge within RO101 and WS107 (one visit) during groundwater monitoring. Should groundwater be encountered during groundworks, sump and pump may not be sufficient and well point dewatering may be required.

4.6 Concrete Classification

The results of sulphate and pH testing carried out on selected soil samples taken during this investigation have been compared with the recommendations outlined in BRE Special Digest 1, Part 1: 2005.

The guidelines given in BRE Special Digest 1 are based upon a site classification relating to its previous usage. It is considered appropriate to define this site as a 'natural ground' location with mobile groundwater for the purposes of concrete classification.

On the basis of the above, it is considered appropriate to adopt a basic Design Sulphate Class of DS-1 together with and Aggressive Chemical Environment for Concrete (ACEC) of AC-1.

One sample, $SA206\ 0.90m-1.20m$ (located in a southern car park within reworked natural deposits) is considered to be potentially pyritic and would likely require a higher Design Sulphate Class. If development is proposed for this area, further testing should be undertaken to confirm the design class in this area of the site.

4.7 Pavement Design

In-situ plate bearing tests were undertaken across the site at five locations to determine the equivalent CBR value. The tests were undertaken below the topsoil layer, at depths between 0.30m and 0.60m begl within cohesive Glacial Till deposits. The results range between 1% and 3% at four locations and 7% at one location. For design purposes, a design CBR of 1% should be utilised.

The results are provided in Appendix VII.

4.8 Infiltration Testing

Seven machine excavated pits were undertaken in pre-agreed locations on the site, to a maximum depth of 1.90m begl. The pits were utilised for infiltration testing. The pits were

backfilled with 20mm wash gravel, using a perforated pipe to allow for monitoring of the water level. Where possible, the tests were filled three times in line with BRE 365 – Soakaway Design, 2016.

SA201, SA203, SA204 and SA205

SA201 was located within the main college grounds, within soft landscaping adjacent to the main car park. SA203 to SA205 were located within the field to the east of the college. The 'storage' area of the four tests was located within Glacial Till Deposits.

These infiltration tests are considered to be failed tests, as the water did not drain sufficiently over a 24 hour period. The results are interpreted as worst case i.e. practically impervious strata with an assumed infiltration rate of less than 10-¹¹.

SA202

SA202 was located within the garden area of residential dwellings on site. Three infiltration tests were completed between 13th and 15th August. The 'storage' area of the water was located within Glacial Till deposits.

Three infiltration tests were completed between 13th and 15th August 2024. The infiltration rates ranged between 3.85 x 10⁻⁶ and 4.36 x 10⁻⁶.

SA206 and SA207

SA206 and SA207 were located within soft landscaping adjacent to the southern car park. Three infiltration tests were completed in both locations between 13^{th} and 15^{th} August 2024. The infiltration rates ranged between 5.49×10^{-5} and 9.15×10^{-5} for SA206 and 3.48×10^{-6} and 9.29×10^{-6} for SA207.

The storage area of the water was located within Made Ground material (reworked natural deposits) comprising weathered mudstone, recovered as dark grey (with orange staining) clayey gravel and cobbles of mudstone.

The results of the infiltration testing can be found within Appendix VI.

4.9 Hand Excavated Pits for Underground Services

Three hand excavated trial pits were undertaken in order to expose existing underground utilities in the field adjacent to the east of the college campus (TP101 – TP103).

TP101 was located in the east of the field, to locate a service shown as 'possible water' on the associated utility drawing. The service was identified at 1.20m begl, exposing an assumed 100mm diameter cast iron pipe.

TP102 was located in the southwest of the field, to expose an unnamed service. An assumed cast iron pipe (100mm diameter) was identified at approximately 0.90m begl depth.

TP103 was located in the southeast of the field, to expose an unnamed service 'joint'. The 'joint' was identified at approximately 0.50m begl, assumed to be lead and 25mm in diameter.

5. Environmental Assessment

5.1 Introduction

The approach to the human health risk assessment reported here follows the principals given in the Land Contamination Risk Management (LCRM) Guidance, i.e. application of the following assessment hierarchy:

- Tier 1 risk screening by establishment of potential pollutant linkages, i.e. the preliminary conceptual site model (PCSM), or
- Tier 2 generic quantitative assessment using generic assessment criteria (GACs) that represent 'acceptably low' risk, or
- Tier 3 quantitative risk assessment using site specific assessment criteria (SSACs) that represent 'unacceptable risk', or where generic assessment criteria are not available, or they are not applicable to the CSM.

The results of laboratory analysis have been screened against GACs including the Defra Category 4 Screening Levels (C4SL) and LQM and CIEH S4ULs for Human Health Risk Assessment (Copyright Land Quality Management Limited reproduced with permission; Publication Number S4UL3180. All rights reserved). (Refs 11 and 12 respectively).

In the absence of a standard scenario for a school environment the standard exposure scenario of residential without home grown produce is usually used to identify potential exposure pathways for human health receptors. Controlled water, flora and fauna and property receptors have also been included within the CSM.

It should be noted that organic contamination (PAH, TPH and BTEX) have been screened against the GAC for 1% Soil Organic Matter (SOM).

Where possible the assessment of PAHs is undertaken using the surrogate marker approach; recommended by Health Protection Agency (2010) guidance, providing the PAH profile is sufficiently similar to the coal tars tested by Culp et al (1998). Where PAH profile is not sufficiently coal tar like the TEF method is adopted using the LQM and CIEH S4ULs.

5.2 Assessment of Soil Analysis Results

Twelve samples, as detailed in section 3.3.2, were scheduled for analysis from the development area to provide a basis for characterising the soils to outline the potential impacts on human health and any environmental receptors from any contamination found.

The screening process for on-site human health receptors show that the GACs for a residential without home grown produce setting were not exceeded, with one exception for Arsenic within Made Ground material, as detailed below.

Table 5.2.1 – GAC Exceedances – residential without home grown produce

Contaminant	GAC (mg/kg)	No. of exceedances	Concentration (mg/kg), sampling location and depth (m)
Arsenic	40 ¹	1	53 - SA201, 0.10m - 0.20m

¹ C4SL

One soil sample was submitted for an asbestos screen and identification. No asbestos or asbestos containing materials have been identified.

The previous ground investigation did not record any elevated levels of contaminates within twelve samples across the main college site.

5.3 Human Health Mitigation

With the exception of the above, the concentrations of potential contaminants recorded at the site indicates an acceptably low risk and therefore significant mitigation measures are not likely to be required as part of the development.

The previous ground investigation did not record any elevated levels of contaminants, including testing of Made Ground materials across the site.

In areas where buildings or hardstanding are proposed the risk will be negligible as this effectively acts as capping and breaks the Source - Pathway - Receptor linkage. Should soft landscaping be proposed, a clean cover system may be required, however given the ground conditions underlying the site and limited extent of exceedances, the requirements for a capping system is likely to comprise suitable topsoil / subsoil for a suitable growing medium.

Made Ground may be suitable to raise levels beneath soft landscaped areas, providing a suitable break layer is provided between the material and the proposed cover system.

Three topsoil tests in accordance with BS3882:2015 Specification for Topsoil have been completed on samples from WS107, TP104 and HDP02 (Locality of SA205). The results indicate that the soils are not compliant with the Multipurpose Range due to Mass Loss on Ignition, Soil pH Value, Electrical Conductivity and Available Nutrient Content. The soils are may comply with a Specific Purpose Range (Low Fertility) but should be confirmed by the landscape architect. The results are compliant within a residential without homegrown produce setting in terms of human health. The results of the topsoil testing are reported in Appendix IV.

It should be noted that levels may dictate the need to remove made ground materials to an appropriately licensed waste management facility.

Although finalised development plans have not been provided, new builds are proposed and therefore some demolition is considered likely. Areas of Made Ground are likely to exist beneath existing building footprints which will not have been assessed as part of this ground

investigation. Where demolition is proposed, it is considered prudent to undertake further ground investigation to confirm that no residual risk of contamination remains, should any source of contamination be identified during demolition stage.

Should any obvious evidence of unexpected contamination be encountered during the redevelopment works it should be reported to HSP Consulting Engineers Ltd so that an inspection can be made and appropriate sampling and assessment work be carried out.

Appropriate health and safety precautions should be adopted during any excavation works to avoid exposure to potentially contaminated soils and dust.

The approval of the local Environmental Health Officer should be sought with respect to the soil contamination assessment and mitigation proposals.

5.4 Ground Gas Risk Assessment

Dual use gas and groundwater monitoring installations were constructed within four of the boreholes at the site during the ground investigation (RO101, RO102, WS107 and WS109). Each well has been constructed using 50mm diameter HDPE pipe. All of the borehole installations have a 6mm pea gravel surround to the slotted pipe with a bentonite seal above and a gas tap. The covers are cemented flush with ground level and are either lockable stopcock or raised covers.

Please note that the wells installed as part of the former ground investigation were located but could not be opened (locking mechanism seized). Ground gas monitoring as part of the previous investigation indicates a Characteristic Situation 1 based on the results.

Four monitoring visits have been undertaken during the current investigation within RO101, RO102, WS107 and WS109. Atmospheric pressures ranged between 1017 and 1025 across the monitoring visits, all of which were recorded as steady during the monitoring period.

The results of monitoring indicate that methane has been recorded less than the minimum detection (<0.1% by vol). Carbon dioxide has been recorded at concentrations ranging between 0.1% by volume to 4.0% by volume in boreholes RO101, R0102 and WS109. In WS107 a maximum carbon dioxide concentration of 5.2% by volume in air was recorded during the first monitoring visit, dropping to between 0.3% and 0.5% by volume on the 2nd and 3rd monitoring visit (the borehole was flooded on the 4th visit).

Maximum steady state gas flows have been recorded at 4.9l/hr within RO101 during the first monitoring visit (the borehole was subsequently flooded the following visits, despite attempts to bail the water out). In the remaining boreholes the steady state gas flows were recorded from <0.1l/hr to 1.6l/hr.

Based on worst case results for each borehole, the maximum steady state gas screening value for the site is 0.0624l/hr.

The results have been assessed in line with the guidance provided in BS8485:2015 + A1:2019 Code of Practice of the design of protective measures for methane and carbon dioxide ground gas for new buildings (Ref 16) and CIRIA Document C665 'Assessing Risks Posed by Hazardous Ground Gases to Buildings' (Ref 17). Comparison of these results with Table 2 of BS8485:2015 + A1:2019 indicates that the site falls in a Characteristic Situation 1 based on the gas screening value. Where Carbon Dioxide levels exceeded 5%, consideration should be given to increasing the Characteristic Situation to 2. During this investigation there has been one marginal exceedance of Carbon Dioxide with a value of 5.2%, no exceedance was recorded during the previous investigation and identified on site sources of ground gas are limited to shallow Made Ground (reworked natural) and topsoil. It is considered that Characteristic Situation 1 is appropriate for the site. Based on the UK radon map the site is located within an area where 3% to 5% of the properties are above the action level for radon and therefore basic radon measures will be required for any new development on the site in accordance with BR 211 (Ref 25).

Depleted oxygen levels were observed within a number of the boreholes during the monitoring. This poses a risk of asphyxiation to construction and maintenance workers in confined spaces such as excavations or manhole chambers. A confined spaces risk assessment should be carried out prior to working in any buried structures or excavations.

The results of the ground gas monitoring can be found in Appendix VIII.

5.5 Water Supply

The environmental testing for the site has been compared to the following document in order to assess the most appropriate pipe material that should be used upon the site for mains water supply:

'Water UK Contaminated Land Assessment Guidance (January 2014).' (Ref. 20).

Testing to the Water UK Suite is beyond the scope of the investigation. However, it is noted that natural ground occurs at shallow depths across the majority of the site and there is no measured indicative organic contamination (petroleum hydrocarbons, phenols) that is likely to be detrimental to the use of plastic water supply pipes within the natural soils tested.

The use of plastic water supply pipes is likely to be suitable if located in natural ground. However, specific targeted testing may be required by the utility provider once the water supply pipe route(s) have been confirmed. Water supply pipes should be placed at a minimum depth of 0.75m below the finished ground level(s) (to the top of the piping).

5.6 Waste Classification

The results of the chemical testing have been assessed using web-based software for classifying hazardous waste, HazWasteOnline $^{\text{TM}}$. The results indicate materials on site are likely to be classified non-hazardous waste. The results are included in Appendix IX.

Please note the above classification provides an indication of how the material should be classified for removal off site; however, this should be used at your approved waste handler's discretion and further testing may be required prior to any offsite disposal. Further testing may classify the material as "inert" for landfill disposal, but this should be undertaken at a later stage by appointed development contractors.

The decision of the disposal facility to accept/reject the waste is final and there is no obligation for any facility to accept the waste.

5.7 Updated Conceptual Site Model

The PCSM and Summary of plausible pollutant linkages was produced by undertaking a Source-Pathway-Receptor analysis of the site using readily available online information and previous reports. Based on the findings of this and the current site investigation the updated conceptual site model has been updated and is presented in the table below.

Table 5.7.1 - Updated Conceptu						
Source	Pathway	Receptor	Consequence	Probability	Risk	Comments
On Site S1: Historical and Contemporary land use: Made Ground associated with development of the site. S2: Historical land use: Orchard.	P1: Human uptake pathways	R1: End Users R2: Construction and Maintenance workers	Mild	Unlikely	Very Low	The screening process for on-site human health receptors show that the GACs, representative of minimal risk for a residential without home grown produce setting were exceeded for Arsenic in one location in Made Ground material. Should soft landscaping be proposed, a clean cover system may be required, however given the ground conditions underlying the site and limited extent of exceedances, the requirements for a capping system is likely to comprise suitable topsoil / subsoil for a suitable growing medium. The risk is considered to be VERY LOW.
	P2: Horizontal and vertical migration of mobile contaminants through potentially permeable soils and rocks. P3: Migration of contaminants along preferential pathways (man-made). P5: Overland flow / surface runoff.	R3: Controlled Water: Surface and Groundwater	Mild	Unlikely	Very Low	The potential sources identified 'on-site' are limited and the ground investigation has confirmed that excluding one arsenic exceedance, no other exceedances have been identified above the relevant GACs. The risk to Controlled Waters is considered to be VERY LOW.
	P4: Underground services and foundations could be potentially directly affected by the presence of contaminated soils or groundwater	R4: Services and structures	Mild	Unlikely	Very Low	The natural soils may contain sulphates that present a risk to buried concrete. The Glaciofluvial deposits and Tetragraptus Beds are classified as a Design Sulphate Class of DS-1 together with an Aggressive Chemical Environment for Concrete (ACEC) of AC-1 has been recorded. The risk is considered to be VERY LOW. The risk to water supply pipes (due to lack of measured indicative organic contamination (petroleum hydrocarbons, phenols) is considered low within natural ground. Provided that the correct construction materials are used the risk remains VERY LOW.
	P7: Root uptake.	R5: Proposed Flora and fauna	Mild	Unlikely	Very Low	Site won soils (topsoil/subsoil) may be suitable as a planting medium but would need to be confirmed by a landscape architect. The risk of uptake to proposed flora and fauna is considered to be VERY LOW providing a suitable planting medium is placed.
Off Site S3: Historical and Contemporary Land Use: Tank and Filter Beds.	P2: Horizontal and vertical migration of contaminants through potentially permeable soils and rocks	R1: End Users	Minor	Unlikely	Very Low	Whilst potential sources of off-site contamination exist migration of contaminants is unlikely due to low leaching soils, one arsenic exceedance was recorded but is considered to be due to Made Ground material on site. The risk from associated from off-site sources is considered to be VERY LOW.
On and Off Site Gas Sources S4: Ground Gases from made ground S5: Ground Gases from historical and recent landfill	P6: Vertical and lateral migration of ground gases and/or vapour.	R1: End Users	Mild	Unlikely	Very Low	Based on the worst case results for each borehole, the results indicate a ground gas characteristic situation of CS1. Based on the UK radon map the site is located within an area where 3% to 5% of the properties are above the action level for radon and therefore basic radon measures will be required for any new development on the site in accordance with BR 211. Providing the measures are appropriately adopted, the risk is considered to be VERY LOW.

6. Development Constraints

The following development constraints have been identified and should be considered further;

A significant level change is recorded across the site which will likely require reprofiling in order to create a level development platform. A cut and fill drawing has not been provided at this stage but once available, the geotechnical assessment should be reviewed to confirm the assessment.

The screening process for on-site human health receptors show that the GACs, representative of minimal risk for a residential without home grown produce, adopted for a school setting, were exceeded for Arsenic in one Made Ground sample. In areas where buildings or hardstanding are proposed the risk will be negligible as this effectively acts as capping and breaks the Source - Pathway - Receptor linkage. Should soft landscaping be proposed, a clean cover system may be required, however given the ground conditions underlying the site and limited extent of exceedances, the requirements for a capping system is likely to comprise suitable topsoil / subsoil for a suitable growing medium.

Following four rounds of ground gas monitoring, it is considered that Characteristic Situation 1 is appropriate for the site and that ground gas protection measures will not be required. Based on the UK radon map the site is located within an area where 3% to 5% of the properties are above the action level for radon and therefore basic radon measures will be required for any new development on the site in accordance with BR 211.

7. References

- 1. HSP Consulting Engineers Limited, Coleg Sir Gar Pibwrlwyd Campus Phase I Geo-Environmental Desk Study Report, November 2022, Ref: HSP2022-C4103-G-GPI-1111.
- 2. HSP Consulting Engineers Limited, Coleg Sir Gar Pibwrlwyd Campus Phase II Geo-Environmental Assessment, February 2023, Ref: HSP2023-C4103-G-GPII-1308.
- 3. BRITISH GEOLOGICAL SURVEY. 1967. Carmarthen, Map Sheet 229. Bedrock and Superficial Deposits. 1:63 360 (Keyworth, Nottingham: British geological Survey).
- 4. British Geological Survey Lexicon Search http://www.bgs.ac.uk/lexicon/
- 5. Department of the Environment Industry Profiles.
- 6. Site Investigation in Construction, Volume 3, Specification for Ground Investigation 2nd Edition.
- 7. BS 5930:2015 +A1:2020 Code of Practice for Site Investigations.
- 8. BS 8576:2013 Guidance on investigations for ground gas. Permanent gases and Volatile Organic Compounds (VOCs)
- 9. BS10175:2011 +A2:2017 Investigation of Potentially Contaminated Sites Code of Practice.
- 10. NHBC Standards, Chapter 4.2, Building near trees.
- 11. Nathanail, C.P., McCaffrey, C., Gillett, A.G., Ogden, R.C. and Nathanail, J.F. 2015. The LQM/CIEH S4ULs for Human Health Risk Assessment. Land Quality Press, Nottingham.
- 12. Department for Environment, Food and Rural Affairs and Contaminated Land: Applications in Real Environments (CL:AIRE) (December 2013). SP1010: Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination.
- 13. BRE Special Digest 1:Concrete in Aggressive Ground, 2005, Building Research Establishment.
- 14. CL:AIRE The definition of Waste: Development Industry Code of Practice, 2008.
- 15. NHBC & RSK Group Plc, March 2007. Guidance on evaluation of development proposals on sites where methane and carbon dioxide are present. Ed 4.
- 16. BS8485:2015 + A1:2019 Code of Practice of the design of protective measures for methane and carbon dioxide ground gas for new buildings
- 17. CIRIA C665 'Assessing Risks Posed by Hazardous Ground Gases to Buildings'
- 18. Department for Environment, Food and Rural Affairs and Contaminated Land: Applications in Real Environments (CL:AIRE) (December 2013). SP1010: Appendix E Provisional C4SLs for Benzo(a)pyrene as a surrogate marker for PAHs.
- 19. www.environment-agency.gov.uk
- 20. UK Water Industry Research, Guidance for the selection of water supply pipes to be used in Brownfield sites, Ref:10/WM/03/21.
- 21. BRE Digest 365, Soakaway Design. Revised 2016
- 22. BS3882:2015. Specification for Topsoil.
- 23. WM3 Environment Agency (2021) Guidance on the classification and assessment of waste (v1.2.GB 2021).
- 24. Waste Classification: Guidance on the Classification and Assessment of Waste (v1.2.GB 2021) Technical Guidance WM3.
- 25. BR 211, BRE 2015 Radon 'Guidance on protective measures for new buildings'

Appendix I

DO NOT SCALE

- Red Line Boundary

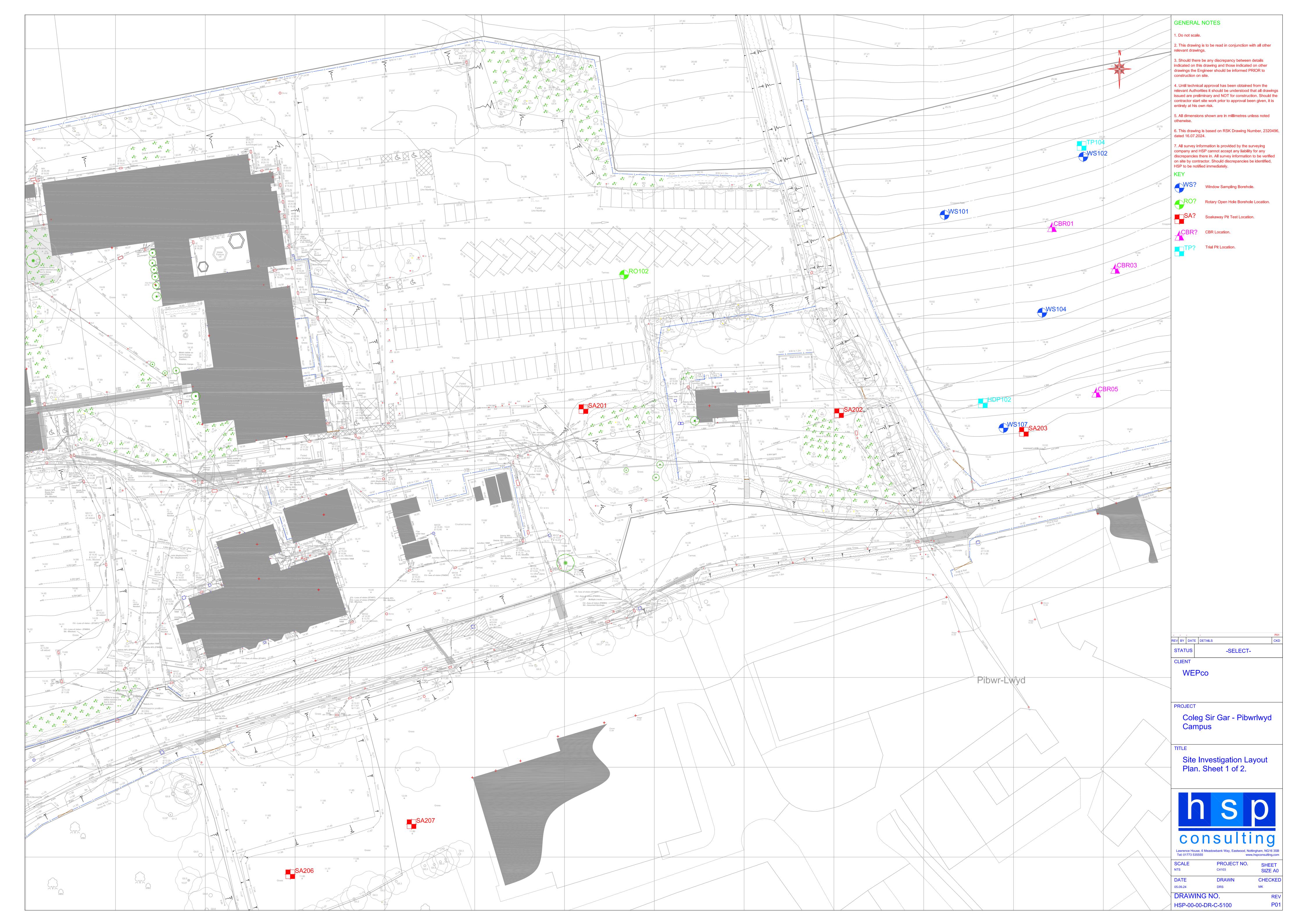
Lawrence House, Meadowbank Way, Eastwood, Nottingham, NG16 3SB Tel: 01773 535 555 Fax: 0870 600 6091

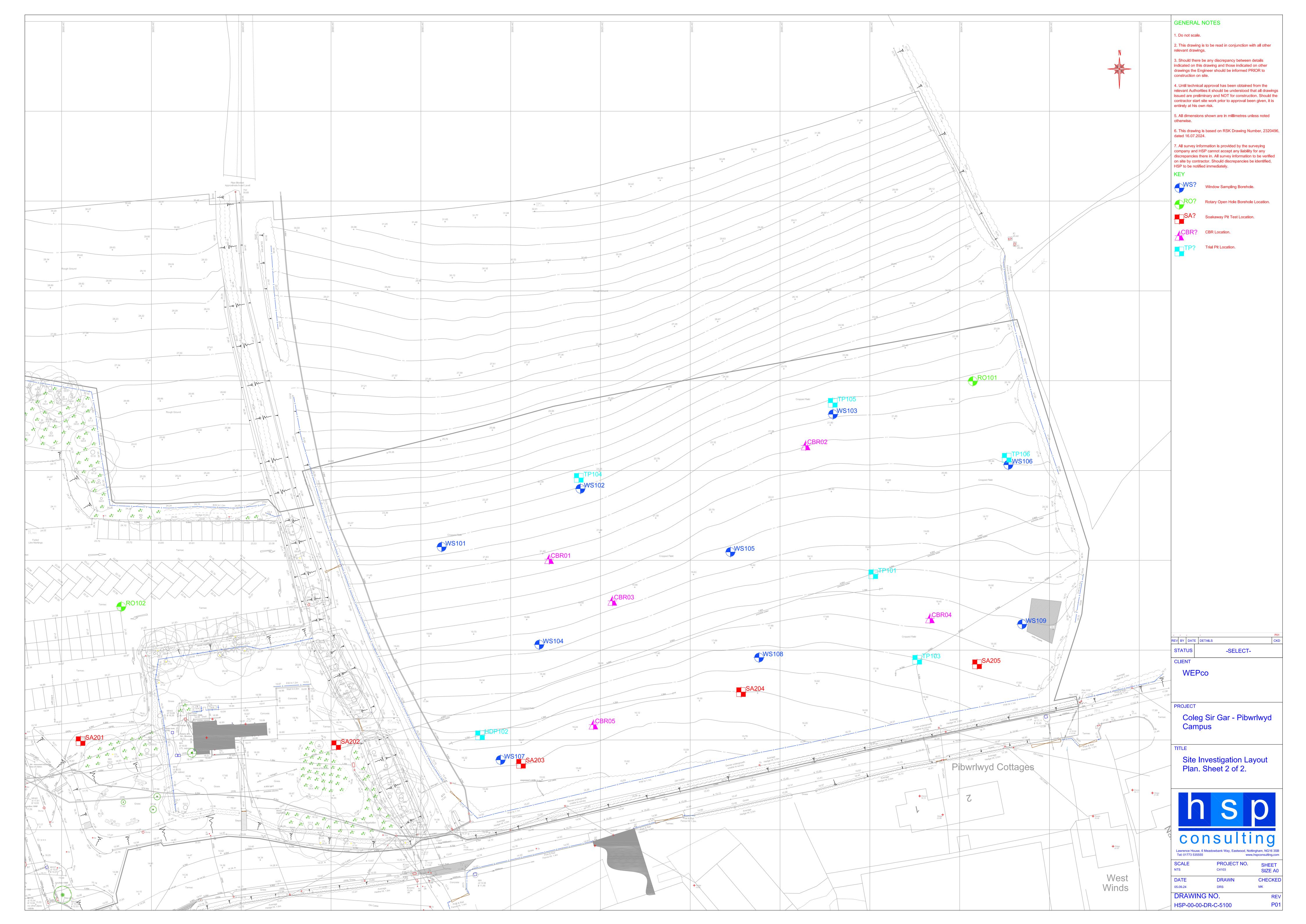
Gleeds Management Ltd

PROJECT: Coleg Sir Gar – Pibwrlwyd Campus

Site Location Plan

L	
SCALE@SIZE :	ISSUE:
NTS	FINAL
DESIGN/DRAWN: NS	OCT 2022
DD O JECT N	D.D. ALLUTALIO, AL


C4103


DRAWING No: 502

© HSP Consulting Engineer Ltd © Crown Copyright.

Appendix II

Appendix III

	l n						Borehole No) .	
11 2					ole Log	RO101			
consu	lting						3	Sheet 1 of 2	2
Project Na	me: Coleg Sir (Gar Pil	wrlwyd Campus	Project No.		Co-ords:	241402.94 - 218359.89	Hole Type	
				C4103				RO Scale	
Location:	Pibwrlwyd	Lane,	Carmarthen			Level:	22.34	1:50	
Client:	WEPco					Dates:	12/08/2024 - 13/08/2024	Logged By AR	,
Well Wa			n Situ Testing	Depth	Level	Legend	Stratum Description		
Strik	Ces Depth (m)	Туре	Results	(m)	(m)				
							CLAY (Drillers description)		1 —
	1.20		N=47 (8,6/8,17,12,10)						-
	2.00		N=17 (4,3/2,4,5,6)						2
	3.00		N=29 (3,2/8,5,8,8)	3.60	18.74		SANDSTONE		3 -
	4.00		50 (25 for 100mm/5 for 65mm)	0			(Drillers description)		4 -
	5.00		50 (25 for 70mm/50 for 30mm)						5 -
	6.50		50 (25 for 20mm/50 for 35mm)	0					6 —
									7 —
	8.00		50 (25 for 95mm/50 for 10mm)	8.00	14.34		SANDSTONE / MUDSTONE (Drillers description)		8 -
	9.50		50 (25 for 15mm/50 for 30mm)	9.50	12.84		SANDSTONE		9 -
						(Drillers description)		10 —	
Remarks	marks						Continued on next sheet		. •

- Remarks

 1. Borehole undertaken utilising 'open holing' methodology with water flush as drilling medium.

 2. Borehole was terminated 15.00m depth at target depth.

 3. Gas and water monitoring standpipe installed to 5.00m depth.

hch									Borehole No.	
	2	P				Bo	reho	ole Log	RO101	
con	sulti	ing						<u> </u>	Sheet 2 of 2	
Projec	t Name:	Coleg Sir (Gar Pil		Project No. C4103		Co-ords:	241402.94 - 218359.89	Hole Type RO	
Locati	on:	Pibwrlwyd	Lane,	Carmarthen			Level:	22.34	Scale 1:50	
Client		WEPco					Dates:	12/08/2024 - 13/08/2024	Logged By AR	
Well	Water Strikes	Samples Depth (m)	and I	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description		
Rema		11.00		50 (25 for 20mm/5 for 40mm) 50 (25 for 50mm/5 for 20mm) 50 (25 for 15mm/5 for 35mm)	0	7.34		End of borehole at 15.00 m	11	

- Remarks

 1. Borehole undertaken utilising 'open holing' methodology with water flush as drilling medium.

 2. Borehole was terminated 15.00m depth at target depth.

 3. Gas and water monitoring standpipe installed to 5.00m depth.

h c n						Borehole No.				
Π	5	p				Bo	reho	ole Log	RO102	2
con	sult	ing					. •	2.0 _09	Sheet 1 of	2
Projec	t Name:	Coleg Sir	Gar Pil	owrlwyd Campus	Project No.		Co-ords:	241213.28 - 218309.68	Hole Type RO	
Location	on:			Carmarthen			Level:	22.06 S		
Client:	1	WEPco					Dates:	14/08/2024 - 15/08/2024	1:50 Logged B	у
	Water	Samples	s and I	In Situ Testing	Depth	Level			AR	
Well	Strikes	Depth (m)	Туре	Results	(m)	(m)	Legend	Stratum Description	1	
		1.20 2.70		N=35 (6,7/9,11,8,7 N=36 (5,9/8,8,10,10	3.60	18.46		CLAY (Drillers description) MUDSTONE / SANDSTONE (Drillers description)		2
		4.20 5.50		50 (25 for 15mm/5) for 35mm) 50 (25 for 25mm/5) for 40mm)		17.86 16.56		SANDSTONE (Drillers description) MUDSTONE / SANDSTONE (Drillers description)		5
		7.00 8.50		50 (25 for 20mm/50 for 30mm) 50 (25 for 15mm/50 for 25mm)		15.06		SANDSTONE (Drillers description)		8
Remai		ve						Continued on next sheet		10 —

- Remarks

 1. Borehole undertaken utilising 'open holing' methodology with water flush as drilling medium.

 2. Borehole was terminated 15.00m depth at target depth.

 3. Gas and water monitoring standpipe installed to 5.00m depth.

								Borehole No.	
11 2	P				Bo	reho	ole Log	RO102	
consu	lting						J	Sheet 2 of 2	
Project Nan	ne: Coleg Sir (Gar Pil		roject No. 4103		Co-ords:	241213.28 - 218309.68	Hole Type RO	
Location:	Pibwrlwyd	Lane,	Carmarthen			Level:	22.06	Scale 1:50	
								Logged By	
Client:	WEPco					Dates:	14/08/2024 - 15/08/2024	AR	
Well Wate	٠٠ <u>-</u> -	ı —	In Situ Testing	Depth	Level	Legend	Stratum Description	1	
Strike	Depth (m) 10.00	Туре	Results 50 (25 for 65mm/50	(m)	(m)		·		
	10.00		for 40mm)]	
								=	
								11 —	
	11.50		E0 /25 for 55mm/50]	
	11.50		50 (25 for 55mm/50 for 30mm)						
								12 —	
								=	
	13.00		50 (25 for 55mm/50 for 40mm)	13.00	9.06		MUDSTONE / SANDSTONE	13 —	
			,				(Drillers description)		
								14 —	
	14.50		50 (25 for 25mm/50 for 35mm)	14.50	7.56		SANDSTONE		
			101 3311111)				(Drillers description)		
				15.00	7.06		End of borehole at 15.00 m	15 <u>-</u>	
								Ė	
								=	
								16 —	
]	
]]	
]]	
								17 —	
								18 🖳	
								19 —	
								20 —	
Remarks			I	1	1				

- Remarks

 1. Borehole undertaken utilising 'open holing' methodology with water flush as drilling medium.

 2. Borehole was terminated 15.00m depth at target depth.

 3. Gas and water monitoring standpipe installed to 5.00m depth.

				_			Trialpit N	u a	
h	SD					Τμ:			
con	sulting					111	ial Pit Log sa20		
Project Name	t Colog Si	r Gar P	ibwrlwyd Campus	Project C4103			Co-ords: 241204.23 - 218279.75 Date Level: 19.41 13/08/20		
Locati	on: Pibwrlwy	d Lane	, Carmarthen				Dimensions 2.2 Scale		
			,				(m): 0 1:25 Logged	d.	
Client	: WEPco				1	1	1.90 MK		
Water Strike			n Situ Testing	Depth	Level (m)	Legeno	Stratum Description		
Š į́ž	Depth	Туре	Results	(m)	(111)	********	MADE GROUND: Grass over dark brownish black	_	
	0.10 - 0.20	ES		0.30	19.11		clayey gravelly fine to coarse sand (topsoil). Gravel is fine to coarse sub-angular of aggregate, asphalt and coal.		
	0.40 - 0.50	ES		0.30	19.11		MADE GROUND: Dark brown sandy gravelly CLAY. Sand is fine to coarse. Gravel is fine to medium, angular of brick and plastic	- - - -	
	0.80 - 0.90 0.80 - 1.10	ES B	HVR=66	0.70	18.71	X X X X X X X X X X	Soft becoming firm yellowish brown slightly sandy slightly gravelly silty CLAY with low cobble content. Sand is fine to medium. Gravel is fine to coarse sub-angular to sub-rounded of mudstone and coal fragments. Cobbles are subrounded of mudstone [GLACIAL TILL].	1 -	
	1.50 - 1.80	В		1.90	17.51		End of pit at 1.90 m	2 -	
								3 —	
								4	

No groundwater was encountered during the excavation.
 Pit backfilled with gravel and perforated piping, and utilised for infiltration testing

Stability: Stable

								Trialpit N	lo
n	SD					Tri	al Pit Log	SA202	
COII	sulting						_	Sheet 1 o	f 1
Projec	t Colea Si	r Gar P	ibwrlwyd Campus	Projec			Co-ords: 241261.18 - 218279.85	Date	
Name	: "			C4103			Level: 18.05	13/08/202	24
Locati	on: Pibwrlwy	d Lane	, Carmarthen				Dimensions 1.8 (m):	Scale 1:25	
OI: 4	. WED						Depth 0	Logged	
Client	: WEPco						1.70	MK	
ž ė	Sample	s and l	n Situ Testing	Depth	Level	Legend	Stratum Description		
Water Strike	Depth	Туре	Results	(m)	(m)	Logono			
	0.20 - 0.30	ES		0.35	17.70		Grass over dark brown sandy slightly gravelly C (TOPSOIL) with abundant 20mm rootlets. Sand coarse. Gravel is fine to coarse sub-angular of and rare quartzite.	is fine to mudstone	-
	0.50 - 0.60 0.50 - 0.90	ES B					Firm yellowish brown mottled grey slightly sand CLAY with rare sub-angular to sub-rounded cot mudstone. Sand is fine to medium. Gravel is fin coarse sub-angular to sub-rounded of mudston [GLACIAL TILL].	bles of e to	1 -
	1.30 - 1.70	В		1.30	16.75		Firm yellowish brown mottled grey slightly sand gravelly CLAY with rare cobbles of mudstone. S fine to coarse. Gravel is fine to coarse sub-angusub-rounded of mudstone [GLACIAL TILL].	and is	- - - - -
				1.70	16.35		End of pit at 1.70 m		-
									2 -
									3 -
									4 —
									- - - - - - -

No groundwater was encountered during the excavation.
 Pit backfilled with gravel and perforated piping, and utilised for infiltration testing

Stability: Stable

				_					
h	cn					— .		Trialpit N	
con	sulting					Ir	al Pit Log	SA20	
				<u> </u>			0 1 044000 04 040074 70	Sheet 1 o	of 1
Projed Name		r Gar P	ibwrlwyd Campus	Projec C4103			Co-ords: 241302.31 - 218274.70 Level: 16.00	Date 13/08/20	2/
				04100	<u> </u>		Dimensions 1.8	Scale	
Locati	ion: Pibwrlwy	d Lane	, Carmarthen				(m):	1:25	
Client	: WEPco						Depth O	Logged MK	t
ter ke	Sample	s and I	In Situ Testing	Depth	Level	Legeno	Stratum Description		
Water Strike	Depth	Туре	Results	(m)	(m)	Legend			
Wa Stri	Depth 0.20 - 0.30 0.60 - 0.70 0.70 - 1.00	ES ES B	HVR=58	0.30 0.70	(m) 15.70 15.30		Grass over brown slightly gravelly sandy CLAY (TOPSOIL). Sand is fine to coarse. Gravel is fine coarse sub-angular to sub-rounded of mudstone. Firm brown mottled orange slightly slity slightly gravelly CLAY with low cobble content. Sand is medium. Gravel is fine to coarse sub-angular to rounded of mudstone. Cobbles rare sub-angular rounded of mudstone [GLACIAL TILL]. Soft to firm grey mottled orangish brown slightly slightly gravelly silty CLAY with occasional sub-ato sub-rounded boulders of mudstone. Sand is fined in medium. Gravel is fine to coarse sub-angular to rounded of mudstone [GLACIAL TILL]. End of pit at 1.80 m	sandy fine to sub- r to sub- sandy angular ine to	2 -
									- - - -

No groundwater was encountered during the excavation.
 Pit backfilled with gravel and perforated piping, and utilised for infiltration testing.

Stability: Stable

				$\overline{}$				Trialpit N	No
h	SD					Tr	ial Pit Log	SA20)4
	sulting						_	Sheet 1 d	of 1
Projec Name:		ir Gar Pil	bwrlwyd Campus	Projec			Co-ords: 241351.32 - 218290.65	Date 13/08/2024	
				C4103	<u>;</u>		Level: 16.46 Dimensions 1.9	13/08/20 Scale	
Location	on: Pibwrlwy	/d Lane,	Carmarthen				(m):	1:25	
Client:						_	Depth 0 1.70	Logged MK	t
Water Strike	Sample Depth	Type	n Situ Testing Results	Depth (m)	Level (m)	Legend	d Stratum Description		
S 0)	0.10 - 0.20	ES	TOOLIG	0.25	16.21		Grass over brown slightly gravelly sandy CLAY (TOPSOIL). Sand is fine to coarse. Gravel is fine coarse sub-angular to sub-rounded of mudstone.	to	- - - - -
	0.50 - 0.60 0.60 - 1.00	ES B		0.60	15.86	N	Firm brown mottled orange slightly slightly signated by CLAY with low cobble content. Sand is fix medium. Gravel is fine to coarse sub-angular to strounded of mudstone. Cobbles rare sub-angular rounded of mudstone [GLACIAL TILL]. Soft pale grey mottled orange silty sandy CLAY woccasional sub-angular to sub-rounded of mudstone [GLACIAL TILL].	ne to sub- to sub- vith	
	1.40 - 1.70	В		1.40	15.06	X	Firm orangish brown mottled grey sandy gravelly with rare sub-angular cobbles of mudstone. Sand to coarse. Gravel is fine to coarse sub-angular to	d is fine	1 —
				1.70	14.76	2724	rounded of mudstone [GLACIAL TILL].	,	
							End of pit at 1.70 m		2
									3 —
									4 —
									-
									=
									5 -
Remar		groundw backfille	water was encountered with gravel and per	ed during frorated p	the exca	avation. nd utilise	d for infiltration testing		

	C							Trialpit N	lo
	SUltipa					Tri	al Pit Log	SA20	
	sulting						_	Sheet 1 o	f 1
Projec Name	t Coleg Si	r Gar Pi	ibwrlwyd Campus	Projec			Co-ords: 241403.88 - 218296.86	Date	
ivame	•			C4103	3		Level: 17.67	13/08/202	24
Locati	on: Pibwrlwy	d Lane	, Carmarthen				Dimensions 1.9 (m):	Scale 1:25	
Client	WEPco						Depth 0	Logged MK	
er	Sample	s and I	n Situ Testing	Depth	Level		Charles Decembring		
Water Strike	Depth	Туре	Results	(m)	(m)	Legend	Stratum Description		
	0.10 - 0.20	ES		0.30	17.37		Grass over brown slightly gravelly sandy CLAY (TOPSOIL). Sand is fine to coarse. Gravel is fine coarse sub-angular to sub-rounded of mudstone) .	-
	0.40 - 0.50 0.40 - 0.60	ES B					Dark brown slightly sandy gravelly CLAY with locontent. Sand is fine to coarse. Gravel is fine to sub-angular mudstone [GLACIAL TILL].	w cobble coarse,	- - - -
	0.90 - 1.30	В		0.70	16.97	0.00	Soft light brownish grey slightly gravelly sandy C Sand is fine to coarse. Gravel is fine to coarse s angular to sub-rounded of mudstone [GLACIAL	ub-	1 -
				1.50	16.17		End of pit at 1.50 m		-
									2 -
									3 -
									4 —
									-

No groundwater was encountered during the excavation.
 Pit backfilled with gravel and perforated piping, and utilised for infiltration testing.

Stability: Stable

								Trialpit N	No
n	Sp					Tri	ial Pit Log	SA20	16
con	sulting					'		Sheet 1 c	of 1
Projec Name	Coled Si	r Gar P	bwrlwyd Campus	Project C4103			Co-ords: 241138.92 - 218176.18 Level: 11.93	Date 13/08/20	
Locati	on: Pibwrlwy	/d Lane	, Carmarthen				Dimensions 2.3	Scale 1:25	
Client	WEPco						Depth 6	Logged MK	d
er (e	Sample	s and I	n Situ Testing	Depth	Level	Legeno	Stratum Description		
Water Strike	Depth	Туре	Results	(m)	(m)	Legend	3 Stratum Description		
	0.05 - 0.10 0.40 - 0.50	TJ		0.40	11 52		MADE GROUND: Grass over dark brown sligh slightly gravelly clay (topsoil)). Sand is fine to c Gravel is fine to coarse sub-angular to sub-roul quartzite and rare mudstone.	oarse.	- - - -
	0.40 - 0.50	LB		0.40	11.53		MADE GROUND: Soft to firm orangish brown r grey slightly gravelly sandy clay. Sand is fine to Gravel is fine to coarse sub-angular to sub-rou mudstone [REWORKED NATURAL].	medium.	
	0.80 - 0.90 0.90 - 1.20	ES LB					MADE GROUND: Reworked weathered mudst Recovered as dark grey slightly sandy clayey fi coarse sub-angular to sub-rounded gravels and of mudstone. Sand is fine to coarse [REWORK NATURAL].	ine to d cobbles	1
				1.70	10.23		End of pit at 1.70 m		2

No groundwater was encountered during the excavation.
 Pit backfilled with gravel and perforated piping, and utilised for infiltration testing.

Stability: Stable

5 -

3 -

4

h	s p					— Tri	al Pit I			Trialpit I	
con	sulting							_09		Sheet 1	
Projec	ct Coleg Si	ir Gar Pi	ibwrlwyd Campus	Projec			Co-ords: 241165.9	93 - 21818	7.33	Date	
Name	•			C4103	<u> </u>		Level: 12.03 Dimensions		1.65	13/08/20 .65 Scale	
Locati	on: Pibwrlwy	/d Lane,	, Carmarthen				(m):	0.5	1.00	1:25	
Client	: WEPco						Depth 1.80	Logge DS	d		
e e	Sample	es and I	n Situ Testing	Depth	Level			21 1 5	. ,.		
Water Strike	Depth	Туре	Results	(m)	(m)	Legend	1	Stratum De	escription		
	0.05 - 0.10 0.20 - 0.30	TJ ES		0.15	11.88		MADE GROUND: slightly gravelly cla Gravel is fine to co quartzite and rare	ay (topsoil)) parse sub-a mudstone.	. Sand is fine to o ngular to sub-rou	coarse. unded of	-
	0.60 - 0.70	ES		0.35	11.68		MADE GROUND: Sand is fine to coa angular to sub-rou NATURAL}. MADE GROUND: Recovered as dar coarse sub-angula of mudstone. Sand	Reworked k grey sligh	I is fine to coarse idstone {REWOR weathered muds tly sandy clayey unded gravels an	tone.	
	1.00 - 1.30	LB					NATURAL].				1
	1.60	LB		1.80	10.23			End of pit a	at 1.80 m		2
											3 —

No groundwater was encountered during the excavation.
 Pit backfilled with gravel and perforated piping, and utilised for infiltration testing.

Stability: Stable

5 -

Trial Pit Log Tribul Sheet 1 of 1 Sheet 1 of 1 Sheet 1 of 1 Date Level: 18.80 Location: Pibwrlwyd Lane, Carmarthen Client: WEPco Samples and in Situ Testing Depth Type Results O25 18.55 D25 D35 D45 D45 D45 D45 D45 D45 D4								Trialpit N	lo.
Sheet 1 of 1 Date Level: 18.80 12/08/2024 12/08/202	h	Sp					Tri		
Project No. Co-ords: 241380.77 - 218316.91 Date Level: 18.80 12002/2024 Location: Pibwrhwyd Lane, Carmarthen Client: WEPco Samples and In Situ Testing Depth (m) Results Depth Type Results Depth (m) Results O.25 18.55 MADE GROUND: Grass overlying reworked brown eligibly gravely samely CLAY (TO-FSOLI). Same is five to coarses. Grave is filter to coarses. Grave	con	sulting							of 1
Name: Seegle in Seri Naminy Cannarthen Location: Pibwriwyd Lane, Carmarthen WEPo Samples and in Situ Testing Depth	Proied	t 0 . 0.			Projec	t No.			
Depth Samples and In Situ Testing Depth Company Depth De	Name	Coleg Sil	r Gar Pi	ibwriwyd Campus	C4103	3		Level: 18.80 12/08/20	24
Cilient: WEPoo Depth Samples and In Situ Testing Depth (m) Legend (m) Stratum Description Depth Type Results (m) Legend (m) Stratum Description MADE GROUND. Reworked brown notified yellow slightly gravely sandy CLAY (TOP SOLL). Sand is fine to corne. Gravel is fine to cornes subangular of mudstone. IREWORKED GLACIAL TILL). 1.22 MADE GROUND. Reworked brown notified yellow slightly gravely sandy CLAY (TOP SOLL). Sand is fine to corne. Gravel is fine to cornes subangular of mudstone. IREWORKED GLACIAL TILL).	Locati	on: Pibwrlwv	d Lane	. Carmarthen					
Samples and in Situ Testing Depth Type Results Depth (m)									1
Depth Type Results (m) (m) Legend MADE GROUND-Desso reprings reweited brown sightly gravelly sender (CLAY (TOPSOLL), Sand is fine to coarse. Gravel	Client	WEPco							4
MADE GROUND: Grass overlying reworked brown slightly gravely sancy (LAY (TOPSOIL). Sand is fine to coarse substangular of mudistone. MADE GROUND: Reworked brown motitor yellow grown and state of the coarse substangular of mudistone. MADE GROUND: Reworked brown motitor yellow grown and state of the coarse substangular of mudistone (Reworked GLACIAL TILL). 1. See a fight at 0.86 m. 1. 1. See a fight at 0.86 m. 1. 2. See a fight at 0.86 m. 1. 3. See a fight at 0.86 m. 1. 4. See a fight at 0.86 m. 1. 4. See a fight at 0.86 m. 1. 5. See	er	Sample	s and I	n Situ Testing	Depth	Level		Ohanhara Danasintian	
MADE GROUND: Grass overlying rewinded brown sightly gravely analy CLAY (TOPSOIL). Sand is fine to coarse. Gravel is fine to coarse subuniquiar of moditore, and the coarse subuniquiar of moditore. MADE GROUND: Rewinded brown and the properties of the coarse subuniquiar of moditore. Some sightly manufacture of the coarse subuniquiar of moditore. The coarse subuniquiar of moditore gravely and the coarse subuniquiar of moditore. The coarse subuniquiar of moditore gravely and the coarse subuniquiar of moditore. The coarse subuniquiar of moditore gravely and the coarse subuniquiar of moditore. The coarse subuniquiar of moditore gravely and the coarse subuniquiar of moditore. The coarse subuniquiar of moditore gravely and the coarse subuniquiar of moditore. The coarse subuniquiar of moditore gravely and the coarse subuniquiar of moditore. The coarse subuniquiar of moditore gravely and the coarse subuniquiar of moditore. The coarse subuniquiar of moditore, and the coarse subuniquiar of moditore. The coarse subuniquiar of moditore, and the coarse subuniquiar of moditore. The coarse subuniquiar of moditore, and the coarse subuniquiar of moditore. The coarse subuniquiar of moditore, and the coarse subuniquiar of moditore. The coarse subuniquiar of moditore, and the coarse subuniquiar of moditore. The coarse subuniquiar of moditore, and the coarse subuniquiar of moditore. The coarse subuniquiar of moditore, and the coarse subuniquiar of moditore. The coarse subuniquiar of moditore, and the coarse subuniquiar of moditore. The coarse subuniquiar of moditore, and the coarse subuniquiar of moditore. The coarse subuniquiar of moditore, and the coarse subuniquiar of moditore. The coarse subuniquiar of moditore, and the coarse subuniquiar of moditore. The coarse subuniquiar of moditore subuniquiar of moditore subuniquiar of moditore. The coarse subuniquiar of moditore subuniquiar of modi	Wat	Depth	Туре	Results			Legend	Stratum Description	
slightly garely (S.AY with occasional sub-angular obbies of mulstons Sand is fine to coarse Sub-rounded to subangular of mudstone [REWORKED GLACIAL TILL] 17.90 17.90 17.90 17.90 17.90 1.					0.25	10 EE		slightly gravelly sandy CLAY (TOPSOIL). Sand is fine to coarse. Gravel is fine to coarse subangular of mudstone.	-
2-								slightly gravelly sandy CLAY with occasional sub-angular cobbles of mudstone. Sand is fine to coarse. Gravel is fine to coarse sub-rounded to subangular of mudstone [REWORKED GLACIAL TILL].	-
					0.90	17.90		End of pit at 0.90 m	3 -
	Remo	rke: 1 Di4	dua for	utility inepaction, since	located	ot 0.85	heal		5 —

6	CD							Trialpit N	lo
	5 P					Tri	al Pit Log	TP10	
	ulting							Sheet 1 o	of 1
Project Name:	Coleg Si	r Gar P	ibwrlwyd Campus	Projec			Co-ords: 241293.18 - 218281.05	Date	0.4
ivallie.				C4103	3		Level: 16.19 Dimensions 0.1	12/08/20	24
Location	n: Pibwrlwy	d Lane	, Carmarthen				(m):	Scale 1:25	
Client:	WEPco						Depth 0 1.20	Logged	i
<u>_</u> 0	Sample	s and l	n Situ Testing	Depth	Level				
Water	Depth	Туре	Results	(m)	(m)	Legend	Stratum Description MADE GROUND: Grass overlying reworked bro	wp	
				1.20	14.99		MADE GROUND: Sandy CLAY (TOPSOIL). Sand i coarse, Gravel is fine to coarse sub-angular of mudstone. MADE GROUND: Reworked brown mottled yells brown slightly gravelly sandy CLAY with occasio angular cobbles of mudstone. Sand is fine to co. Gravel is fine to coarse sub-rounded to sub-ang mudstone [REWORKED GLACIAL TILL]. End of pit at 1.20 m	owish nal sub-	1 — 3 — 3 — 3 — 5 — 5 — 5 — 5 — 5 — 5 — 5
Remark	s: 1. Pit	dug for	utility inspection, pipe	e located a	at 0.90m	begl.		AG	S
Stability	. Stable								_

								Trialpit No	
Ш	5 0					Tri	al Pit Log	TP103	
cons	ulting							Sheet 1 of 1	_
Project Name:	Coleg Sir	Gar Pi	ibwrlwyd Campus	Projec			Co-ords: 241390.55 - 218297.86	Date	
ivame.				C4103	3		Level: 17.51 Dimensions 0.1	12/08/2024 Scale	_
Location	n: Pibwrlwyd	Lane	, Carmarthen				(m):	1:25	
Client:	WEPco						Depth 6	Logged	
		and I	n Situ Testing				0.55	DS	_
Water Strike	-		_	Depth (m)	Level (m)	Legend	Stratum Description		
≥ છ	Depth	Туре	Results	(***)	(***)		MADE GROUND: Grass overlying reworked brow	vn	_
				0.10 0.35 0.55	17.40 17.16 16.95		MADE GROUND: Grass overlying reworked brow slightly gravelly sandy CLAY (TOPSOIL.) Sand is coarse. Gravel is fine to coarse sub-rounded to sungular of mudstone. MADE GROUND: Reworked brown slightly sandy slightly gravelly CLAY with occasional fine to coarse to coarse. Gravel is fine to coarse sub-rounded to angular of mudstone and concrete [REWORKED GLACIAL TILL]. MADE GROUND: Reworked brown mottled yellow brown slightly sandy slightly gravelly CLAY. Sand to coarse. Gravel is fine to coarse sub-rounded to angular of mudstone [REWORKED GLACIAL TILL]. End of pit at 0.55 m	fine to ub- y rse sub- d is fine o sub- wish is fine o sub- L]. 1	
								5	_
Remark		ug for	utility inspection, pipe	located a	at 0.50m	begl.		AGS	

								Trialpit N	Jo.
h	Sp					Tri	al Pit Log	TP10	
con	sulting							Sheet 1 o	f 1
Projec Name		r Gar P	ibwrlwyd Campus	Projec C4103			Co-ords: 241315.18 - 218338.36 Level: 23.25	Date 14/08/202	24
Locati	on· Pibwrlwy	d Lane	, Carmarthen				Dimensions 2	Scale	
Loodii		u Luno	, oarmaranon				(m): $_{\mbox{\scriptsize ω}}$	1:25	
Client	: WEPco						Depth 6	Logged MK	1
e e	Sample	s and l	n Situ Testing	Depth	Level	Ī			
Water Strike	Depth	Туре	Results	(m)	(m)	Legend	Stratum Description		
	0.10 - 0.20	TJ		0.25 0.40	23.00 22.85		Grass over brown slightly gravelly slightly sand (TOPSOIL) with rootlets. Sand is fine to mediur is fine to coarse sub-angular of coal and mudst Firm brown slightly sandy slightly gravelly CLAY fine to medium. Gravel is fine to medium sub-a mudstone [GLACIAL TILL]. Soft becoming firm yellowish brown mottled gresandy slightly gravelly CLAY. Sand is fine to medium, sub-angular to sub-root gravel is fine to medium, sub-angular to sub-root gravel.	m. Gravel one. Y. Sand is ngular of ey slightly edium.	-
	1.00 - 1.50	LB		0.80	22.45		mudstone [GLACIAL TILL]. Firm yellowish grey slightly sandy gravelly CLA fine to coarse. Gravel is fine to coarse sub-ang sub-rounded of mudstone [GLACIAL TILL].	Y. Sand is	1 -
	2.10 - 2.50	LB		2.10	21.15		Weathered MUDSTONE recovered as dark gre orange sandy fine to coarse sub-angular to sub GRAVELS of mudstone with frequent pockets of Sand is fine to coarse [TETRAGRAPTUS BED	o-rounded of clay.	2 -
				2.50	20.75		End of pit at 2.50 m		3

 No groundwater was encountered during the excavation.
 Pit backfilled with arisings upon completion. Remarks:

Stability: Stable

								Trialpit N	lо
n	SD					Tri	al Pit Log	TP10	5
CON	sulting							Sheet 1 o	of 1
Projed Name		r Gar Pi	bwrlwyd Campus	Projec			Co-ords: 241371.74 - 218355.08	Date	
ivame	:			C4103	3		Level: 22.41	14/08/20	
Locati	on: Pibwrlwy	d Lane	, Carmarthen				Dimensions 2.2 (m):	Scale 1:25	
Client	: WEPco						Depth 0	Logged MK	t
er (e	Sample	s and I	n Situ Testing	Depth	Level	Legend	Stratum Description		
Water Strike	Depth	Туре	Results	(m)	(m)	Legeno	Stratum Description		
				0.35	22.06		Grass over brown slightly gravelly slightly sand (TOPSOIL) with rootlets. Sand is fine to mediun is fine to coarse sub-angular of coal and mudston sightly sandy slightly gravelly CLAY fine to medium. Gravel is fine to medium sub-ar	n. Gravel one. '. Sand is	- - - - - - -
	0.70 - 1.10	LB		0.65	21.76		mudstone [GLACIAL TILL]. Soft becoming firm yellowish brown mottled gre sandy slightly gravelly CLAY. Sand is fine to me Gravel is fine to medium fine to medium sub-an sub-rounded of mudstone [GLACIAL TILL].	dium.	1 -
				1.40	21.01		Firm yellowish brown mottled grey slightly sand gravelly silty CLAY. Sand is fine to medium. Grato medium sub-rounded of mudstone [GLACIAL	vel is fine	2 -
	2.20 - 2.50	LB		2.20	20.21		Firm brown and yellowish grey mottled sandy g cobbly CLAY. Sand is fine to coarse. Gravel is f coarse sub-angular to sub-rounded of mudston	ine to	-
				2.50	19.91		End of pit at 2.50 m		3 —
									4 —
									5 —

 No groundwater was encountered during the excavation.
 Pit backfilled with arisings upon completion. Remarks:

Stability: Stable

								Trialpit N	1 0
n	SD					Tri	al Pit Log	TP10	6
5011	sulting						_	Sheet 1 c	of 1
Projed Name		Gar Pi	bwrlwyd Campus	Projec			Co-ords: 241410.48 - 218342.84	Date	
ivame	i: -			C4103	}		Level: 21.10	14/08/20	
Locati	ion: Pibwrlwy	d Lane	, Carmarthen				Dimensions 2 (m):	Scale 1:25	
Client	: WEPco						Depth 0.50	Logged MK	t
er Ge	Sample	s and I	n Situ Testing	Depth	Level		01 1 5 11		
Water Strike	Depth	Туре	Results	(m)	(m)	Legend			
	0.70 - 1.00	LB		0.20	20.90		Grass over brown slightly gravelly slightly sandy (TOPSOIL) with rootlets. Sand is fine to medium is fine to coarse sub-angular of coal and mudsto Soft becoming firm yellowish brown mottled grey sandy slightly gravelly CLAY. Sand is fine to med Gravel is fine to medium sub-angular to sub-rour mudstone [GLACIAL TILL].	. Gravel ne. v slightly dium.	1 -
	2.00 - 2.50	LB		2.00	19.50	**************************************	Firm dark orange greyish brown slightly sandy green CLAY. Sand is fine to coarse. Gravel is fine to coarse sub-angular of mudstone with frequent orange standard grey gravelly cobbly CLAY with occasi to coarse sub-angular ro sub-rounded boulders of Gravel is fine to coarse sub-angular to sub-rounded gravel is fine to coarse sub-angular rounded [TETRAGRAPTUS BEDS].	onal fine of .	2 -
				2.50	18.60		End of pit at 2.50 m		3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -

 No groundwater was encountered during the excavation.
 Pit backfilled with arisings upon completion. Remarks:

Stability: Stable

		1 0							Borehole N	0.
	5	D				Boi	reh	ole Log	WS10 ²	1
con	sulti	ing					.		Sheet 1 of	1
Projec	t Name:	Coleg Sir (Gar Pil		oject No. 4103		Co-ords:	241284.64 - 218322.99	Hole Type WS)
Locati	on:	Pibwrlwyd	Lane,	Carmarthen			Level:	22.06	Scale 1:50	
Client:		WEPco					Dates:	14/08/2024 - 14/08/2024	Logged By MK	y
Well	Water Strikes	Samples Depth (m)	Type	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description		
		0.20 - 0.30	ES	Rosuits	0.25	21.81		Grass over brown slightly gravelly s CLAY (TOPSOIL) with rootlets. San medium. Gravel is fine to coarse sul	d is fine to	- - -
		0.60 - 0.70	ES		0.55	21.51		coal and mudstone. Firm brown slightly sandy slightly gr Sand is fine to medium. Gravel is fir	avelly CLAY.	-
		1.00 1.20	D	N=11 (2,2/2,3,3,3)	1.10	20.96		sub-angular of mudstone [GLACIAL Firm yellowish brown mottled grey s slightly gravelly CLAY. Sand is fine t	lightly sandy o medium.	1 -
		1.50 - 1.80	В					Gravel is fine to medium fine to med angular to sub-rounded of mudstone TILL].	e [GLACIAL	_ - -
		2.00 2.20	D	N=50 (3,3/4,7,13,26)	2.10	19.96		Firm yellowish brown mottled grey s slightly gravelly silty CLAY. Sand is a medium. Gravel is fine to medium significant strengths as for medium.	fine to	2 -
					2.45	19.61		of mudstone [GLACIAL TILL]. Weathered MUDSTONE. Recovered grey slightly clayey sandy fine to contain angular gravels of mudstone. Sand	arse sub-	- - -
								Coarse. End of borehole at 2.45 m		3 —
										- - -
										4 =
										-
										5 —
										- -
										-
										6 —
										-
										7 -
										-
										8 -
										-
										9 —
										-
										10 —

- Remarks

 1. No groundwater was encountered during the drilling works.

 2. Borehole was terminated 2.45m depth due to SPT refusal.

	C	<u> </u>							Borehole N	0.
Ш	5	P				Boi	ceho	ole Log	WS102	2
con	sult	ing							Sheet 1 of	1
Project	Name:	Coleg Sir (Gar Pik		Project No. C4103		Co-ords:	241315.53 - 218335.93	Hole Type WS)
Locatio	n:	Pibwrlwyd	Lane,	Carmarthen			Level:	22.81	Scale 1:50	
Client:		WEPco					Dates:	14/08/2024 - 14/08/2024	Logged By MK	y
Well	Water Strikes	Samples Depth (m)	Type	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description		
		0.50 - 0.60 0.70 - 1.00 1.00	ES B	N=18 (2,3/4,4,4,6)	0.25 0.40 0.80	22.56 22.41 22.01		Grass over brown slightly gravelly s CLAY (topsoil) with rootlets. Sand is medium. Gravel is fine to coarse sul coal and mudstone. Firm brown slightly sandy slightly gr Sand is fine to medium. Gravel is fir sub-angular of mudstone [GLACIAL Firm yellowish brown mottled grey s slightly gravelly CLAY. Sand is fine t	a fine to b-angular of avelly CLAY. The to medium TILL].	1 —
		1.50 1.70	D	N=17 (2,2/3,4,4,6)	2.10	20.71		Gravel is fine to medium fine to med angular to sub-rounded of mudstone TILL]. Firm yellowish grey slightly sandy g Sand is fine to coarse. Gravel is fine sub-angular to sub-rounded of muds	dium sub- e [GLACIAL ravelly CLAY. e to coarse	2 —
		2.40 - 2.70 2.50 2.70	B D	N=50 (10,15/50 for 195mm)	2.70	20.11		[GLACIAL TILL]. Weathered MUDSTONE. Recovere grey with orange staining sandy fine sub-angular to sub-rounded GRAVE mudstone. Sand is fine to coarse [TETRAGRAPTUS BEDS]. End of borehole at 2.70 m	to coarse	3 -
										4 —
										5
										6 -
										7 -
										8 -
										9 —
										10 —

- Remarks

 1. No groundwater was encountered during the drilling works.

 2. Borehole was terminated 2.70m depth due to SPT refusal.

		10							Borehole N	lo.
Ω	5	O				Bo	reho	ole Log	WS103	3
con	sulti	i n g					. •	515 259	Sheet 1 of	1
Projec	t Name:	Coleg Sir	Gar Pil		Project No. C4103		Co-ords:	241371.80 - 218352.53	Hole Type WS	Э
Location	on:	Pibwrlwyd	Lane,	Carmarthen			Level:	22.02	Scale 1:50	
Client:		WEPco					Dates:	14/08/2024 - 14/08/2024	Logged B	у
Well	Water			n Situ Testing	Depth (m)	Level	Legend	Stratum Description	1	
Well	Water Strikes	Samples Depth (m) 0.05 - 0.15 1.00 1.00 1.20 - 1.50 2.00 2.30 2.65	Type ES D B	Results N=12 (2,4/3,3,3,3,3,3,3,4,4,6,8,9,9) N=50 (6,7/50 for 265mm)	(m) 0.35 0.65 1.40 2.20	Level (m) 21.67 21.37 20.62 19.82 19.42 19.37	Legend	Grass over brown slightly gravelly s CLAY [TOPSOIL] with rootlets. San medium. Gravel is fine to coarse su coal and mudstone. Firm brown slightly sandy slightly gi Sand is fine to medium. Gravel is fine sub-angular of mudstone [GLACIAL Firm yellowish brown mottled grey s slightly gravelly CLAY. Sand is fine of silence of sub-rounded of mudston TILL]. Firm yellowish brown mottled grey s slightly gravelly silty CLAY. Sand is medium. Gravel is fine to medium s of mudstone [GLACIAL TILL]. Firm to stiff dark orange greyish brown sandy gravelly CLAY. Sand is fine to Gravel is fine to coarse sub-angular with frequent orange staining [GLACIAL TILL]. Weathered MUDSTONE. Recovere grey with orange staining sandy fine sub-angular to sub-rounded GRAVE mudstone. Sand is fine to coarse [TETRAGRAPTUS BEDS]. Cobble of grey sandstone at 2.60m begl. End of borehole at 2.65 m	diightly sandy d is fine to b-angular of ravelly CLAY. ne to medium TILL]. slightly sandy to medium. dium sub- e [GLACIAL slightly sandy fine to ub-rounded own slightly o coarse. of mudstone CIAL TILL]. d as, dark e to coarse	1 2 3 4 5 6 7 8 8
										9 —
										10 —

- Remarks

 1. No groundwater was encountered during the drilling works.

 2. Borehole was terminated 2.65m depth due to SPT refusal.

Borehole Log Water Coleg Sir Gar Pibwrhwyd Campus Carlos (A103) Location: Pibwrhwyd Lane, Carmarthen Levet: 19.69 Levet: 19.69 Scale 1.50 Client: WEPco Water Coleg Sir Gar Pibwrhwyd Lane, Carmarthen Levet: 19.69 Lavet: 19.69 Lavet: 19.69 Lavet: 19.69 Lavet: 19.69 Lavet: 19.69 Lavet: 19.69 Stratum Description Grass over brown slighty gravely (LaVer Sighty Sandy Sig		C	<u> </u>							Borehole N	lo.
Sheet 1 of 1 Project Name: Coleg Sir Gar Pibwritwyd Campus Cd103 Client: WEPco Client:	Ш	5	S D				Boi	reho	ole Loa	WS10	5
Piberthydy Lane, Carmarthen	con	sult	ing					•		Sheet 1 of	1
Location: Pibwriwyd Lane, Carmarthen Level: 19 69 Scale 150 Client: WEPco Dales: 14/08/2024 -14/08/2024 Logged 5y MrK Water Samples and In Situ Testing Strikes Depth (m) Type Results D. Company Results D. Company D. Co	Projec	t Name:	Coleg Sir (Gar Pik				Co-ords:	241348.94 - 218321.85		9
Client: WEPco Well Water Samples and In Situ Testing Strikes Depth (m) Type Results 0.40 - 0.50 ES 0.30 19.39 0.70 18.59 0.70 1.00 1.00 1.00 1.50 B N=16 (1.33.4.4.5) 2.00 D N=16 (1.33.4.4.5) 3.00 D N=16 (1.33.4.4.5)	Locatio		Diburbard	Long		54103		Loveli	10.60		
Well Water Samples and In Situ Testing Depth (m) Type Results (m) (m) Level (m) Strikes Depth (m) Type Results (m) User Strikes Depth (m) Type Results (m) User Strikes Depth (m) Type Results (m) User Strikes Depth (m) User Strikes Depth (m) Type Results (m) User Strikes Depth (m) User Depth (m) User Strikes Depth (m) User Depth (m) U	Locali	OII.	FibWilwyu	Lane,	Camarinen			Level.	19.09		.,
Strikes Depth (m) Type Results (m) (m) Legend Stratum Description Stra	Client:		WEPco					Dates:	14/08/2024 - 14/08/2024		у
Depth (m) Type Results (m) (m) (m) Caracteristics (m) (m) (m) Caracteristics (m) Caracter	Well		Samples	and I	n Situ Testing			Legend	Stratum Description		
0.40 - 0.50 ES 0.90 D 1.00 - 1.50 B 1.00 D	X//XX///	Strikes	Depth (m)	Туре	Results	(m)	(m)	~/ <u>\$</u>			
0.90			0.40 0.50	EQ		0.30	19.39		CLAY (TOPSOIL) with rootlets. San	d is fine to	
1.00 1.00 - 1.50 N=16 (1,3/3,4,4,5) N=16 (1,			0.40 - 0.30			0.70	18 00		coal and mudstone.		_
1.00 - 1.50 B 1.00 B 1.00 - 1.50 B 1.00 B 1.00 - 1.50 B 1.00 B 1.				D			10.99		Sand is fine to medium. Gravel is fir	ne to medium	1
200 200 2.00 - 2.30 B N=14 (1,2/3,3,4,4) I 1.90 I 17.79 Firm brown motified grangish grey slightly sandly slightly gravely silf fine to consers sub-angular to sub-rounded of mudstone [GLACIAL TILL]. Firm brown motified orangish grey slightly sandly slightly gravely silf fine to consers sub-angular to sub-rounded of mudstone [GLACIAL TILL]. Weather MUDSTONE. Recovered as dark grey with orange statining dayey fine to coarse sub-angular to sub-rounded GRAVELS of mudstone. Sand is fine to main grave with grave sub-rounded GRAVELS of mudstone. Sand is fine to coarse sub-angular to sub-rounded GRAVELS of mudstone. Sand is fine to coarse sub-angular to sub-rounded GRAVELS of mudstone. Sand is fine to coarse sub-angular to sub-rounded GRAVELS of mudstone. Sand is fine to coarse sub-angular to sub-rounded GRAVELS of mudstone. Sand is fine to coarse sub-angular to sub-rounded GRAVELS of mudstone. Sand is fine to coarse sub-angular to sub-rounded GRAVELS of mudstone. Sand is fine to coarse sub-angular to sub-rounded GRAVELS of mudstone. Sand is fine to coarse sub-angular to sub-rounded GRAVELS of mudstone. Sand is fine to coarse sub-angular to sub-rounded GRAVELS of mudstone. Sand is fine to coarse sub-angular to sub-rounded GRAVELS of mudstone. Sand is fine to coarse sub-angular to sub-rounded GRAVELS of mudstone. Sand is fine to coarse sub-angular to sub-rounded GRAVELS of mudstone. Sand is fine to coarse sub-angular to sub-rounded GRAVELS of mudstone. Sand is fine to coarse sub-angular to sub-rounded GRAVELS of mudstone. Sand is fine to coarse sub-angular to sub-rounded GRAVELS of mudstone. Sand is fine to coarse sub-angular to sub-rounded GRAVELS of mudstone. Sand is fine to coarse sub-angular to sub-rounded GRAVELS of mudstone. Sand is fine to sub-rounded GRAVELS of mudstone.				В	N=16 (1,3/3,4,4,5)				Firm yellowish brown mottled grey s	slightly sandy	-
2 00 2.00 - 2.00 B N=14 (1,2/3,3,4,4) B N=14 (1,2/3									Gravel is fine to medium sub-angula	ar to sub-	_
2.00 2.00						1 90	17 79		•	•	-
2.80 3.00 N=50 (6.8/50 for 295mm) N=50 (6.8/			2.00		N=14 (1,2/3,3,4,4)		11.10	<u>×</u> × ×	slightly gravelly silty CLAY. Sand is	fine to	2 —
N=50 (6,8/50 for 295mm) N=50 (6,8/50 for 295m			2.00 - 2.30	В					medium. Gravel is fine to coarse sul sub-rounded of mudstone [GLACIAI	b-angular to L TILL].	_
3.00 N=50 (6,8/50 for 295mm) 16.69 grey with orange staining dayey fine to coarse sub-angular to sub-rounded CRAVELS of mudstone. Sand is fine to coarse ITETRAGRAPTUS BEDS] ITETRAGRAPTUS BEDS] End of borehole at 3.00 m 4			2 80	D		2.70	16.99		Weathered MUDSTONE. Recovere	d as, dark	- - -
TITETRAGRAPTUS BEDS) End of boreinule at 3.00 in 4						3.00	16.69		grey with orange staining clayey fine sub-angular to sub-rounded GRAVE	e to coarse ELS of	3 -
					295mm)				\ [TETRAGRAPTUS BEDS].	;	- -
									End of borehole at 3.00 m	'	-
											4 -
											- -
											_
											_ =
8											5 -
8											=
8											=
											6 -
											=
											-
											7 –
											=
											_
											0 -
											_
											_
											9 -
											=
											10 —

- Remarks

 1. No groundwater was encountered during the drilling works.

 2. Borehole was terminated 3.00m depth due to SPT refusal.

Project Name Coleg Sir Gar Pilbwriwyd Campus	L		<u> </u>							Borehole N	lo.
Sheet 1 of 1 Shee	Ш	5	P				Boi	reho	ole Loa	WS104	4
Color Project Marker Color Sir Provincy Carmarthen Color Scale Color Scale Color Scale Color Scale Color Scale Color C	con	sult	ing						J	Sheet 1 of	1
	Projec	t Name:	Coleg Sir (Gar Pik				Co-ords:	241306.38 - 218301.23		Э
Western Western Strikes Strikes Strikes Depth (m) Type Results Depth (m) Type Results Depth (m) Type Results Depth (m) Type Results Depth (m) Type	Locati	on:	Pibwrlwyd	Lane,		<u> </u>		Level:	19.09	Scale	
Strikes Depth (m) Type Results (m) (m) Legend Stratum Description	Client:		WEPco					Dates:	14/08/2024 - 14/08/2024		y
0.10 - 0.20 ES 0.70 - 0.80 ES 1.00 N=7 (1,1/1,0.2.4) 1.30 - 1.50 B 1.90 D N=25 (3,4/5,6.6.8) 2.50 D 2.50 - 2.80 B 3.00 N=50 (10,14/50 for 225mm) N=50 (10,14/50 for 225mm) N=50 (10,14/50 for 225mm) 0.30 16.09 Carass over brown slightly sandy is fine to coases sub-angular of rocal and mutatione. Soft to firm yellowish brown motited gray slightly sandy slightly s	Well							Legend	Stratum Description		
0.70 - 0.80 ES 1.00 N=7 (1.1/1.0.2.4) 1.30 - 1.50 B 1.50 D 2.00 N=25 (3.4/5.6.6.8) 2.50 D 2.50 - 2.80 B 3.00 N=50 (10.14/50 for 22/5mm) 1.60 S 1.60	\\/\\\\/	Strikes	,		Results	(m)	(m)	\/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-		
1.00 1.30 - 1.50 1						0.30	18.79		CLAY (TOPSOIL) with rootlets. San medium. Gravel is fine to coarse su coal and mudstone. Soft to firm yellowish brown mottled	d is fine to b-angular of grey slightly	- - - - -
1.90 2.00 D N=25 (3.4/5,6.8) 2.50 2.50 - 2.80 B S 3.00 N=50 (10.14/50 for ZZbinm) N=50 (10.14/50 for Zzbinm) 1.80 17.29 Firm to stiff greyish brown sandy gravelly CLAY. Sand is fine to coarse-gravel is fine to coarse sub-angular to sub-rounded of mudstone sub-angular to sub-rounded GRAVELS of mudstone. Sand is fine store as draw grey with orange stainaght fine to coarse sub-angular to sub-rounded GRAVELS of mudstone. Sand is fine store as draw grey with orange stainaght fine to coarse sub-angular to sub-rounded GRAVELS of mudstone. Sand is fine to coarse sub-angular to sub-rounded GRAVELS of mudstone. Sand is fine to coarse sub-angular to sub-rounded GRAVELS of mudstone. Sand is fine to coarse sub-angular to sub-rounded GRAVELS of mudstone. Sand is fine to coarse sub-angular to sub-rounded GRAVELS of mudstone. Sand is fine to coarse sub-angular to sub-rounded GRAVELS of mudstone. Sand is fine to coarse sub-angular to sub-rounded GRAVELS of mudstone. Sand is fine to coarse sub-angular to sub-rounded GRAVELS of mudstone. Sand is fine to coarse sub-angular to sub-rounded GRAVELS of mudstone. Sand is fine to coarse sub-angular to sub-rounded GRAVELS of mudstone. Sand is fine to coarse sub-angular to sub-rounded GRAVELS of mudstone. Sand is fine to coarse sub-angular to sub-rounded GRAVELS of mudstone. Sand is fine to coarse sub-angular to sub-rounded GRAVELS of mudstone. Sand is fine to coarse sub-angular to sub-rounded GRAVELS of mudstone. Sand is fine to coarse sub-angular to sub-rounded GRAVELS of mudstone. Sand is fine to coarse sub-angular to sub-rounded GRAVELS of mudstone. Sand is fine to coarse sub-angular to sub-rounded GRAVELS of mudstone. Sand is fine to coarse sub-angular to sub-rounded GRAVELS of mudstone. Sand is fine to coarse sub-angular to sub-rounded GRAVELS of mudstone. Sand is fine to coarse sub-angular to sub-rounded GRAVELS of mudstone. Sand is fine to coarse sub-angular to sub-rounded GRAVELS of mudstone. Sand is fine to coarse sub-angular to sub-rounded GRAVELS of mudstone. Sand is fine t			1.00		N=7 (1,1/1,0,2,4)				sandy slightly gravelly silty CLAY. Somedium. Gravel is fine to medium s	and is fine to	1 -
1.90			1.30 - 1.50	В							-
2.50 2.50 2.50 B B 2.50 - 2.80 B N=50 (10.14/50 for 225mm) N=50 (10.14				D	N=25 (3,4/5,6,6,8)		17.29		Sand is fine to coarse. Gravel is fine sub-angular to sub-rounded of mud	e to coarse	2 -
3.00 N=50 (10,14/50 for 225mm) 3.00 16.09 mudstone. Sand is fixe to coarse						2.40	16.69		Weathered MUDSTONE. Recovere grey with orange staining sandy fine	to coarse	- - - -
			3.00			r 3.00	16.09		mudstone. Sand is fine to coarse [TETRAGRAPTUS BEDS].		3 —
											_ _ _
											4 =
											_
											5 -
											_
											6 -
											_
											7 -
											8 -
											-
10 -											9 -
10 -											-
											10 —

- Remarks

 1. No groundwater was encountered during the drilling works.

 2. Borehole was terminated 3.00m depth due to SPT refusal.

	C	5							Borehole N	0.
П	5	Р				Boi	reho	ole Log	WS106	6
con	sult	ing						J	Sheet 1 of	1
Projec	t Name:	Coleg Sir (Gar Pil		Project No. C4103		Co-ords:	241410.85 - 218341.28	Hole Type WS)
Locati	on:	Pibwrlwyd	Lane,	Carmarthen			Level:	20.82	Scale 1:50	
Client:		WEPco					Dates:	14/08/2024 - 14/08/2024	Logged By MK	y
Well	Water Strikes			n Situ Testing	Depth	Level	Legend	Stratum Description		
	Strikes	Depth (m)	Туре	Results	(m)	(m)		Grass over brown slightly gravelly s	lightly sandy	_
		0.50 - 0.60 0.70 - 1.00	ES B		0.20	20.62		CLAY (TOPSOIL) with rootlets. San- medium. Gravel is fine to coarse sul- coal and mudstone. Firm yellowish brown mottled grey s	b-angular of	
		1.00 1.00	D	N=12 (2,3/3,3,3,3,3))			slightly gravelly CLAY. Sand is fine to Gravel is fine to medium fine to med angular to sub-rounded of mudstone TILL].	lium sub- e [GLACIAL	1 —
		0.00		N. 40 (0.0/0.0 0.4	1.60	19.22		Firm dark orange greyish brown slig gravelly CLAY. Sand is fine to coars fine to coarse sub-angular of mudste [GLACIAL TILL].	e. Gravel is one	
		2.00 2.50 - 3.00	В	N=12 (2,3/3,2,3,4))			Firm dark grey slightly gravelly silty is fine to coarse sub-angular to sub-mudstone [TETRAGRAPTUS BEDS	rounded of	2 —
		3.00 3.00	D	N=19 (4,3/3,4,5,7))					3 —
		3.65		N=50 (25 for 65mm/50 for 55mm	3.55 3.60	17.27 17.22		Weathered MUDSTONE. Recovered grey slightly clayey sandy fine to contain angular gravels of mudstone. Sand coarse [TETRAGRAPTUS BEDS].	arse sub-	4 —
										5 —
										6 —
										7 —
										8 —
										9 —
										10 —

- Remarks

 1. No groundwater was encountered during the drilling works.

 2. Borehole was terminated 3.55m depth due to SPT refusal.

h	C	<u></u>							Borehole N	lo.
Ш	5	P				Boi	reho	ole Log	WS107	7
con	sult	ing						J	Sheet 1 of	1
Project	Name:	Coleg Sir (Gar Pil		Project No. C4103		Co-ords:	241297.76 - 218275.56	Hole Type WS	Э
Locatio	n:	Pibwrlwyd	Lane,	Carmarthen			Level:	16.17	Scale 1:50	
Client:		WEPco					Dates:	15/08/2024 - 15/08/2024	Logged By MK	у
WALL I	Water Strikes			n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description		
1///	L	Depth (m) 0.50 - 0.60 1.00 1.00 1.00 - 1.50 2.00 2.20 2.80 3.00	Type ES D D	Results N=20 (2,4/5,5,4,6) N=15 (1,1/2,2,4,7) N=50 (25 for 115mm/50 for 100mm)	(m) 0.30 0.50 1.00		Legend	Grass over brown slightly gravelly s CLAY (CLAY) with rootlets. Sand is medium. Gravel is fine to coarse su coal and mudstone. Soft brown slightly sandy slightly gravelly gravelly gravelly or mudstone [GLACIAL Firm greyish brown with occasional mottling slightly sandy gravelly CLA fine to medium. Gravel is fine to gravelly CLAY. Sand is fine to Gravel is fine to coarse sub-angular [GLACIAL TILL]. Firm dark orangish brown gravelly 0 is fine to coarse sub-angular of mud [GLACIAL TILL]. Weathered MUDSTONE. Recovere grey with orange staining clayey fine sub-angular to sub-rounded GRAVE mudstone. Sand is fine to coarse [TETRAGRAPTUS BEDS]. End of borehole at 3.00 m	lightly sandy fine to b-angular of avelly CLAY. ne to medium .TILL]. yellow Y. Sand is dium sub- e [GLACIAL lightly sandy o coarse. of mudstone CLAY. Gravel lstone d as, dark e to coarse	1 2 3 4 5 6 7 7
										9
Domori										<u> </u>

- Remarks

 1. No groundwater was encountered during the drilling works.

 2. Borehole was terminated 3.00m depth due to SPT refusal.

 3. Gas and water monitoring standpipe installed to 3.00m depth.

		<u> </u>							Borehole N	0.
Ш	5	P				Boi	reho	ole Log	WS108	3
con	sult	ing						- · · · · · · · · · · · · · · · · · · ·	Sheet 1 of	1
Projec	t Name:	Coleg Sir (Gar Pil		Project No. C4103		Co-ords:	241355.32 - 218298.35	Hole Type WS	9
Locati	on:	Pibwrlwyd	Lane,	Carmarthen			Level:	17.13	Scale 1:50	
Client:		WEPco					Dates:	15/08/2024 - 15/08/2024	Logged By MK	y
Well	Water Strikes			n Situ Testing	Depth (m)	Level	Legend	Stratum Description		
	Strikes	Depth (m) 0.20 - 0.30 0.70 - 1.00 0.80 1.00 1.30 - 1.60 1.50 1.95 2.00	Type ES B D B D D	N=15 (1,2/3,3,4,5 N=50 (7,8/8,12,14,16)	1.10 1.60 1.90 2.00	(m) 16.83 16.03 15.53 15.23 15.13		Grass over brown slightly gravelly s CLAY (TOPSOIL) with rootlets. San medium. Gravel is fine to coarse sul coal and mudstone. Firm pale grey mottled brownish yel gravelly silty CLAY. Gravel is fine to angular of mudstone [GLACIAL TILI Firm to stiff orangish brown mottled sandy slightly gravelly CLAY. Sand i medium. Gravel is fine to coarse sul sub-rounded of mudstone [GLACIAI Firm to stiff orangish brown mottled gravelly sandy CLAY. Sand is fine to Gravel is fine to coarse sub-angular [GLACIAL TILL]. Weathered MUDSTONE. Recovere grey with orange staining clayey fine sub-angular to sub-rounded GRAVE mudstone. Sand is fine to coarse [TETRAGRAPTUS BEDS]. End of borehole at 2.00 m	lightly sandy d is fine to b-angular of low slightly medium sub]. grey slightly s fine to b-angular to L TILL]. grey slightly o coarse. of mudstone d as, dark e to coarse	1 2 3 4 5 6 7 8 9
Doma										10 —

- Remarks

 1. No groundwater was encountered during the drilling works.

 2. Borehole was terminated 2.00m depth due to SPT refusal.

L	C	^							Borehole N	lo.
Ш	5	Р				Bo	reho	ole Log	WS109	9
con	sult	ing							Sheet 1 of	1
Projec	t Name:	Coleg Sir	Gar Pik		Project No. C4103		Co-ords:	241413.91 - 218305.78	Hole Type WS	Э
Location	on:	Pibwrlwyd	Lane,	Carmarthen	<u> </u>		Level:	18.42	Scale 1:50	
Client:		WEPco					Dates:	15/08/2024 - 15/08/2024	Logged B	у
Well	Water Strikes	•	s and I	n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description		
II IX		Depth (m) 0.40 - 0.50	Type	Results	0.35	18.07		Grass over brown slightly gravelly s CLAY (TOPSOIL) with rootlets. San medium. Gravel is fine to coarse su	d is fine to	-
		0.70 - 1.00	В		0.70	17.72		coal and mudstone. Firm yellowish brown mottled grey s	lightly sandy	-
		1.00 1.00	D	N=12 (1,1/1,3,5,3))			slightly gravelly CLAY. Sand is fine to Gravel is fine to medium fine to med angular to sub-rounded of mudstone	dium sub-	1 -
		1.50 - 1.80	В		1.50	16.92		TILL]. Firm yellowish brown and orangish	grey mottled	_
		1.75	D					slightly sandy gravelly CLAY. Sand i coarse. Gravel is fine to coarse sub-	s fine to	
		2.00		N=24 (3,5/6,7,6,5				sub-rounded of mudstone [GLACIAl Firm to stiff yellowish brown and gre sandy slightly gravelly CLAY. Sand it	L TILL]. ey slightly s fine to	2 -
		2.60	D		2.45	15.97	*** * *** **** ***********************	medium. Gravel is fine to medium sof mudstone [GLACIAL TILL].	/	1 -
		3.00		N=50 (25 for 135mm/50 for	3.00	15.42		Weathered MUDSTONE. Recovere grey with orange staining clayey fine sub-angular to sub-rounded GRAVE mudstone. Sand is fine to coarse	e to coarse	3 -
				125mm)				[TETRAGRAPTUS BEDS]. Band of dark grey sandy gravelly CLAY.	 	-
								End of borehole at 3.00 m		4 -
										-
										5 —
										-
										6 -
										-
										7 —
										, - -
										-
										8 -
										-
										9 —
										9 -
										-
										10 —
Remai	rks				-		1			

- Groundwater strike encountered from 2.00m begl.
 Borehole was terminated 3.00m depth due to SPT refusal.
 Gas and water monitoring standpipe installed to 3.00m depth.

Appendix IV

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070

Email: info@chemtest.com

Amended Report

Report No.: 24-27162-8

Initial Date of Issue: 06-Sep-2024 Date of Re-Issue: 15-Oct-2024

Re-Issue Details:

This report has been revised and directly

supersedes 24-27162-7 in its entirety

Client HSP Consulting Engineers Limited

Client Address: Lawrence House

Meadowbank Way

Eastwood

Nottinghamshire

NG16 3SB

Contact(s): Matthew Kent

Project C4103 Coleg Gir Sar

Quotation No.: Date Received: 22-Aug-2024

Order No.: Date Instructed: 22-Aug-2024

No. of Samples: 11

Turnaround (Wkdays): 11 Results Due: 06-Sep-2024

Date Approved: 13-Sep-2024 Subcon Results Due: 13-Sep-2024

Approved By:

Details: David Smith, Technical Director

For details about application of accreditation to specific matrix types, please refer to the Table at the back of this report

Results - Soil

Project: C4103 Coleg Gir Sar

Client: HSP Consulting Engineers Limited			Chem	ntest Jo	b No.:	24-27162	24-27162	24-27162	24-27162	24-27162	24-27162	24-27162	24-27162
Quotation No.:		Ch		t Samp		1855656	1855657	1855658	1855659	1855660	1855661	1855662	1855663
				mple Lo		SA201	SA202	SA205	SA206	WS101	WS103	WS104	WS105
				Sample	Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				op Dept		0.10	0.20	0.10	0.05	0.20	0.05	0.10	0.40
			Botto	om Dept	th (m):	0.20	0.30	0.20	0.10	0.30	0.15	0.20	0.50
				Date Sar	npled:		13-Aug-2024	13-Aug-2024	13-Aug-2024	14-Aug-2024	14-Aug-2024	14-Aug-2024	14-Aug-2024
				Asbesto	s Lab:	DURHAM			Ğ	Ŭ	J		
Determinand	HWOL Code	Accred.	SOP	Units	LOD								
ACM Type		U	2192		N/A	-							
Asbestos Identification		U	2192		N/A	No Asbestos Detected							
Moisture		N	2030	%	0.020	20	15	21	29	21	21	24	22
Soil Colour		N	2040		N/A	Brown	Brown		Brown	Brown	Brown	Brown	Brown
Other Material		N	2040		N/A	Stones and Roots	Stones		Stones and Roots	Stones and Roots	Stones and Roots	Stones and Roots	Stones
Soil Texture		N	2040		N/A	Sand	Loam		Sand	Sand	Sand	Sand	Sand
Chromatogram EPH	EH_2D_Total_#1	N			N/A	See Attached	See Attached	See Attached	See Attached	See Attached	See Attached	See Attached	See Attached
Chromatogram (TPH)	EH_1D_Total	N			N/A			See Attached	See Attached				
Chromatogram VPH	HS_2D_Total	N			N/A	See Attached	See Attached	See Attached	See Attached	See Attached	See Attached	See Attached	See Attached
pH at 20C		М	2010		4.0	9.3	I/S	9.2	9.1	9.0	9.1	9.2	9.0
Boron (Hot Water Soluble)		М	2120	mg/kg	0.40	0.82	0.58	0.45	< 0.40	< 0.40	0.87	1.0	0.45
Sulphate (2:1 Water Soluble) as SO4		М	2120	g/l	0.010	0.037	< 0.010	< 0.010	< 0.010	< 0.010	0.025	< 0.010	< 0.010
Total Sulphur		U	2175	%	0.010	0.23	0.070	0.070	0.060	0.11	0.050	0.050	0.020
Cyanide (Total)		М	2300	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Sulphide (Easily Liberatable)		N	2325	mg/kg	0.50	2.7	< 0.50	2.8	2.7	2.6	3.1	4.2	4.5
Sulphate (Total)		U	2430	mg/kg	100	3400	1700	1200	730	920	610	660	290
Arsenic		М	2455	mg/kg	0.5	53	12	11	9.4	14	9.7	8.4	6.4
Cadmium		М	2455	mg/kg	0.10	0.35	0.20	< 0.10	0.15	< 0.10	< 0.10	< 0.10	< 0.10
Chromium		М	2455	mg/kg	0.5	21	13	18	14	28	21	19	18
Antimony		N	2455	mg/kg	2.0	3.4	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Copper		М	2455	mg/kg	0.50	70	31	11	15	22	24	13	13
Mercury		М	2455	mg/kg	0.05	0.35	0.09	0.09	0.06	0.23	0.10	0.07	< 0.05
Nickel		М	2455	mg/kg	0.50	36	20	11	11	17	13	11	12
Lead		М	2455	mg/kg	0.50	92	51	32	43	50	48	32	16
Selenium		М	2455	mg/kg	0.25	3.7	0.47	0.47	< 0.25	0.44	0.33	< 0.25	< 0.25
Vanadium		U	2455	mg/kg	0.5	32	25	24	18	43	32	30	19
Zinc		М	2455	mg/kg	0.50	120	120	49	83	74	51	50	47
Chromium (Hexavalent)		N	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Aliphatic VPH >C5-C6	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	[C] < 0.05	< 0.05	< 0.05
Aliphatic VPH >C6-C7	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	[C] < 0.05	< 0.05	< 0.05
Aliphatic VPH >C7-C8	HS_2D_AL	U	2780		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	[C] < 0.05	< 0.05	< 0.05
Aliphatic VPH >C6-C8 (Sum)	HS_2D_AL	N	2780	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	[C] < 0.10	< 0.10	< 0.10
Aliphatic VPH >C8-C10	HS_2D_AL	U	2780		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	[C] < 0.05	< 0.05	< 0.05
Total Aliphatic VPH >C5-C10	HS_2D_AL	U	2780	mg/kg	0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	[C] < 0.25	< 0.25	< 0.25
Aliphatic EPH >C10-C12 MC	EH_2D_AL_#1	М	2690	mg/kg	2.00	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	[C] < 2.0	< 2.0	< 2.0
Aliphatic EPH >C12-C16 MC	EH_2D_AL_#1	М	2690	mg/kg	1.00	< 1.0	< 1.0	1.1	< 1.0	< 1.0	[C] < 1.0	< 1.0	< 1.0
Aliphatic EPH >C16-C21 MC	EH_2D_AL_#1	M	2690	mg/kg	2.00	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	[C] < 2.0	< 2.0	< 2.0
Aliphatic EPH >C21-C35 MC	EH_2D_AL_#1	М	2690	mg/kg	3.00	< 3.0	4.5	5.1	< 3.0	< 3.0	[C] < 3.0	3.5	< 3.0
Aliphatic EPH >C35-C40 MC	EH_2D_AL_#1	N	2690	mg/kg	10.00	< 10	< 10	< 10	< 10	< 10	[C] < 10	< 10	< 10

Results - Soil

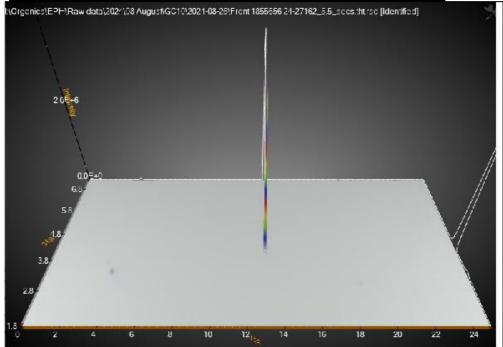
Project: C4103 Coleg Gir Sar

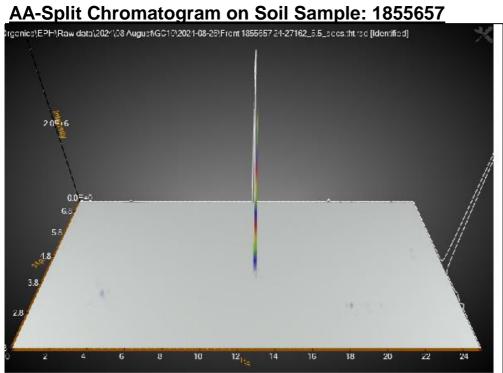
Oliver USB Organization Fundamental institut			Ch a se	4004 lo	h Na -	04.07400	04.07400	04.07400	04.07400	04.07400	04.07400	04.07400	04.07400
Client: HSP Consulting Engineers Limited				test Jo		24-27162	24-27162	24-27162	24-27162	24-27162	24-27162	24-27162	24-27162
Quotation No.:		Cn		t Samp		1855656	1855657	1855658	1855659	1855660	1855661	1855662	1855663
				nple Lo		SA201	SA202	SA205	SA206	WS101	WS103	WS104	WS105
				Sample		SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
				op Dep	/	0.10	0.20	0.10	0.05	0.20	0.05	0.10	0.40
				om Dep		0.20	0.30	0.20	0.10	0.30	0.15	0.20	0.50
				Date Sai		13-Aug-2024	13-Aug-2024	13-Aug-2024	13-Aug-2024	14-Aug-2024	14-Aug-2024	14-Aug-2024	14-Aug-2024
Defense de	LIMOL O- I-	A I		Asbesto		DURHAM							
Determinand	HWOL Code	Accred.					5.0	0.7	. 5.0	. 5.0	[0] . 5.0	.50	.50
Total Aliphatic EPH >C10-C35 MC	EH_2D_AL_#1	M N		mg/kg		< 5.0	5.8	6.7	< 5.0	< 5.0	[C] < 5.0	< 5.0	< 5.0
Total Aliphatic EPH >C10-C40 MC	EH_2D_AL_#1			mg/kg			< 10	< 10	< 10	< 10	[C] < 10	< 10	< 10
Aromatic VPH > C5-C7	HS_2D_AR	U		mg/kg		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	[C] < 0.05	< 0.05	< 0.05
Aromatic VPH >C7-C8	HS_2D_AR	_		mg/kg		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	[C] < 0.05	< 0.05	< 0.05
Aromatic VPH >C8-C10	HS_2D_AR	U		mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	[C] < 0.05	< 0.05	< 0.05
Total Aromatic VPH >C5-C10	HS_2D_AR	U	2780	mg/kg	0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	[C] < 0.25	< 0.25	< 0.25
Aromatic EPH >C10-C12 MC	EH_2D_AR_#1	υ:		mg/kg		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	[C] < 1.0	< 1.0	< 1.0
Aromatic EPH >C12-C16 MC	EH_2D_AR_#1	U		mg/kg		< 1.0	2.3	< 1.0	< 1.0	< 1.0	[C] < 1.0	< 1.0	< 1.0
Aromatic EPH >C16-C21 MC	EH_2D_AR_#1	U		mg/kg		3.4	5.0	3.6	4.7	3.5	[C] 4.1	3.9	4.3
Aromatic EPH >C21-C35 MC	EH_2D_AR_#1	U		mg/kg		6.1	20	14	5.0	10	[C] 7.2	12	< 2.0
Aromatic EPH >C35-C40 MC	EH_2D_AR_#1	N	2690	mg/kg		23	4.9	4.1	< 1.0	< 1.0	[C] < 1.0	1.8	< 1.0
Total Aromatic EPH >C10-C35 MC	EH_2D_AR_#1	U	2690	mg/kg		9.9	27	18	9.7	14	[C] 11	16	6.1
Total Aromatic EPH >C10-C40 MC	EH_2D_AR_#1	N	2690	mg/kg			32	22	< 10	14	[C] 11	18	< 10
Total VPH >C5-C10	HS_2D_Total	U	2780	mg/kg		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	[C] < 0.50	< 0.50	< 0.50
Total EPH >C10-C35 MC	EH_2D_Total_#1	U	2690				33	25	11	17	[C] 15	20	< 10
Total EPH >C10-C40 MC	EH_2D_Total_#1	N		mg/kg			38	29	11	17	[C] 15	21	< 10
LOI		M	2610	%	0.10		13	12	10	7.8	8.1	8.0	5.3
Organic Matter		M	2625	%	0.40	31	7.6	6.9	7.1	4.5	7.9	8.3	2.2
Total Organic Carbon	ELL OD AL #4	M	2625	%	0.20			4.0	4.1				
Aliphatic TPH >C5-C6	EH_2D_AL_#1	N	2680		1.0			< 1.0	< 1.0				
Aliphatic TPH >C6-C8	EH_2D_AL_#1	N	2680					< 1.0	< 1.0				
Aliphatic TPH >C8-C10	EH_2D_AL_#1	N	2680	mg/kg				< 1.0	< 1.0				
Aliphatic TPH >C10-C12	EH_2D_AL_#1	N	2680	mg/kg				< 1.0	< 1.0				
Aliphatic TPH >C12-C16	EH_2D_AL_#1	N	2680	mg/kg				< 1.0	< 1.0				
Aliphatic TPH >C16-C21	EH_2D_AL_#1	N	2680	mg/kg				< 1.0	< 1.0				
Aliphatic TPH >C21-C35	EH_2D_AL_#1	N N	2680	mg/kg				5.2 6.6	< 1.0 5.2				
Aliphatic TPH >C35-C44	EH_2D_AL_#1			mg/kg	_				-				
Total Aliphatic Hydrocarbons	EH_2D_AL_#1	N	2680	mg/kg				12	5.2				
Aromatic TPH > C5-C7	EH_2D_AR_#1	N	2680	mg/kg				< 1.0	< 1.0				
Aromatic TPH > C7-C8	EH_2D_AR_#1	N	2680	mg/kg	_			< 1.0	< 1.0 < 1.0				
Aromatic TPH > C8-C10	EH_2D_AR_#1	N	2680	mg/kg				< 1.0	-				
Aromatic TPH >C10-C12	EH_2D_AR_#1	N	2680	mg/kg				< 1.0	< 1.0				
Aromatic TPH > C12-C16	EH_2D_AR_#1	N	2680	mg/kg	_		-	< 1.0	< 1.0				
Aromatic TPH > C16-C21	EH_2D_AR_#1	N N	2680	mg/kg		-	-	3.5	4.8 5.0				
Aromatic TPH >C21-C35 Aromatic TPH >C35-C44	EH_2D_AR_#1		2680 2680	mg/kg				14					
	EH_2D_AR_#1	N		mg/kg				5.4	< 1.0 9.8	<u> </u>			
Total Aromatic Hydrocarbons	EH_2D_AR_#1	N	2680	mg/kg	5.0		-	23					
Total Petroleum Hydrocarbons	EH_2D_Total_#1	N	2680	mg/kg		.10	.10	35	15	.10	[0] .4.0	110	.10
Benzene		M	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	[C] < 1.0	< 1.0	< 1.0
Toluene		M	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	[C] < 1.0	< 1.0	< 1.0
Ethylbenzene		М	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	[C] < 1.0	< 1.0	< 1.0

Results - Soil

Project: C4103 Coleg Gir Sar

		01			0.4.0=400	0.4.0=400		0.4.0=400	212=122	24.07400	0.4.0=400	24.07400
	01											24-27162
	Cr											1855663
												WS105
												SOIL
												0.40
												0.50
						13-Aug-2024	13-Aug-2024	13-Aug-2024	14-Aug-2024	14-Aug-2024	14-Aug-2024	14-Aug-2024
LIMOL Code	Assusal											
HWOL Code						.10	-10	-10	-10	[0] . 1.0	.10	110
												< 1.0 < 1.0
						-	_		-		_	< 1.0
							_				-	< 0.10
												< 0.10
				•								< 0.10
												< 0.10
			0 0									< 0.10
				•								< 0.10
				•								< 0.10
												< 0.10
												< 0.10
												< 0.10
												< 0.10
												< 0.10
												< 0.10
												< 0.10
												< 0.10
												< 0.10
												< 2.0
						₹ 2.0		12	₹ 2.0	₹ 2.0	₹ 2.0	₹ 2.0
				•								
				•								
				•								
			0 0									
			0 0									
				•								
			0 0									
				•								
	N	2830		_			< 0.20					
	1/1											
	HWOL Code	HWOL Code	Chemtes Sar	Chemtest Sample	M 2760 μg/kg 1.0 M 2760 μg/kg 1.0 M 2760 μg/kg 1.0 M 2800 mg/kg 0.10 N 2800 mg/kg 0.10 M 2800 mg/kg 0.10 N 2800 mg/kg 0.10 N 2800 mg/kg 0.10 N 2800 mg/kg 0.20 N 2820 mg/kg 0.20 N 2830 mg/kg 0.20	Chemtest Sample ID.: Sample Location: SA201	Chemtest Sample ID.: 1855656 1855657 Sample Location: SA201 SA202 Sample Type: SOIL Top Depth (m): 0.10 0.20 0.30 Date Sampled; 13-Aug-2024 13-Aug-2024 13-Aug-2024 Asbestos Lab: DURHAM DURHA	Chemtest Sample ID:	Chemtest Sample ID.: 1855656 1855657 1855658 1855659 Sample Location: SA201 SA202 SA205 SA206 SOIL S	Chemtest Sample ID.: 1855656 1855657 1855658 1855650 Sample Location: SA201 SA202 SA205 SA206 W/S101	Chemtest Sample ID: 1855656	Chemtest Sample IDs: 1855665 1855667 1855668 1855669 1855661 1855661 1855662 Sample Location SA201 SA205 SA205 SA206 SVI WS101 WS103 WS104 Sample Type: SOIL SO


Client: HSP Consulting Engineers Limited			Chemte	est Job N	No.:	24-27162	24-27162	24-27162	24-27162	24-27162	24-27162	24-27162	24-27162
Quotation No.:		Che	mtest	Sample I	ID.:	1855656	1855657	1855658	1855659	1855660	1855661	1855662	1855663
			Samp	ole Locati	tion:	SA201	SA202	SA205	SA206	WS101	WS103	WS104	WS105
			S	ample Ty	уре:	SOIL							
			To	p Depth ((m):	0.10	0.20	0.10	0.05	0.20	0.05	0.10	0.40
			Botton	n Depth ((m):	0.20	0.30	0.20	0.10	0.30	0.15	0.20	0.50
			Da	te Sampl	led: ´	13-Aug-2024	13-Aug-2024	13-Aug-2024	13-Aug-2024	14-Aug-2024	14-Aug-2024	14-Aug-2024	14-Aug-2024
			As	sbestos L	_ab:	DURHAM							
Determinand	HWOL Code	Accred.	SOP	Jnits L0	OD								
Terbutryn		N :	2830 n	ng/kg 0.	.20			< 0.20					
Alpha-HCH		N	2840 n	ng/kg 0.	.20			< 0.20					
Gamma-HCH (Lindane)		N	2840 n	ng/kg 0.	.20			< 0.20					
Beta-HCH		N	2840 n	ng/kg 0.	.20			< 0.20					
Delta-HCH		N :	2840 n	ng/kg 0.	.20			< 0.20					
Heptachlor		N :	2840 n	ng/kg 0.	.20			< 0.20					
Aldrin		N :	2840 n	ng/kg 0.	.20			< 0.20					
Heptachlor Epoxide		N :	2840 n	ng/kg 0.	.20			< 0.20					
Gamma-Chlordane		N :	2840 n	ng/kg 0.	.20			< 0.20					
Alpha-Chlordane		N :	2840 n	ng/kg 0.	.20			< 0.20					
Endosulfan I		N :	2840 n	ng/kg 0.	.20			< 0.20					
4,4-DDE		N :	2840 n	ng/kg 0.	.20			< 0.20					
Dieldrin		N	2840 n	ng/kg 0.	.20			< 0.20					
Endrin		N :	2840 n	ng/kg 0.	.20			< 0.20					
4,4-DDD				ng/kg 0.				< 0.20					
Endosulfan II		N :	2840 n	ng/kg 0.	.20			< 0.20					
Endrin Aldehyde		N :	2840 n	ng/kg 0.	.20			< 0.20					
4,4-DDT		N :	2840 n	ng/kg 0.	.20			< 0.20					
Endosulfan Sulphate				ng/kg 0.				< 0.20					
Methoxychlor		N :	2840 n	ng/kg 0.	.20			< 0.20					
Endrin Ketone		N :	2840 n	ng/kg 0.	.20			< 0.20					
Total Phenols		M	2920 n	ng/kg 0.	.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10


Client: HSP Consulting Engineers Limited				test Jo		24-27162	24-27162	24-27162
Quotation No.:		Chemtest Sample ID.:				1855664	1855665	1855666
				nple Lo		WS107	WS109	TP104
				Sample	, ,	SOIL	SOIL	SOIL
				op Dep		0.10	0.40	0.10
				om Dep		0.20	0.50	0.20
				ate Sa		14-Aug-2024	14-Aug-2024	14-Aug-2024
				Asbesto				
Determinand	HWOL Code	Accred.		Units				
ACM Type		U	2192		N/A			
Asbestos Identification		U	2192		N/A			
Moisture		N	2030	%	0.020	47	23	17
Soil Colour		N	2040		N/A		Brown	
Other Material		N	2040		N/A		Roots	
Soil Texture		N	2040		N/A		Sand	
Chromatogram EPH	EH_2D_Total_#1	N			N/A	See Attached	See Attached	See Attached
Chromatogram (TPH)	EH_1D_Total	N			N/A	See Attached		See Attached
Chromatogram VPH	HS 2D Total	N			N/A	See Attached	See Attached	See Attached
pH at 20C		М	2010		4.0	8.9	8.8	8.9
Boron (Hot Water Soluble)		М		mg/kg	0.40	< 0.40	< 0.40	0.63
Sulphate (2:1 Water Soluble) as SO4		М	2120	g/l	0.010	< 0.010	< 0.010	< 0.010
Total Sulphur		U	2175	%	0.010	0.020	0.040	0.020
Cyanide (Total)		М		mg/kg	0.50	I/S	0.50	< 0.50
Sulphide (Easily Liberatable)		N		mg/kg	0.50	2.1	2.5	2.6
Sulphate (Total)		U		mg/kg	100	2000	1100	470
Arsenic		М	2455	mg/kg	0.5	6.1	16	11
Cadmium		М		mg/kg	0.10	< 0.10	< 0.10	< 0.10
Chromium		М		mg/kg	0.5	20	29	24
Antimony		N	2455	mg/kg	2.0	< 2.0	< 2.0	< 2.0
Copper		М	2455	mg/kg	0.50	16	14	21
Mercury		M	2455	mg/kg	0.05	0.07	0.07	0.06
Nickel		М	2455	mg/kg	0.50	17	19	18
Lead		М		mg/kg	0.50	32	27	30
Selenium		М	2455	mg/kg	0.25	0.27	0.83	0.42
Vanadium		U	2455	mg/kg	0.5	25	35	27
Zinc		М		mg/kg	0.50	64	58	65
Chromium (Hexavalent)		N		mg/kg	0.50	< 0.50	< 0.50	< 0.50
Aliphatic VPH >C5-C6	HS_2D_AL	U		mg/kg	0.05	< 0.05	[C] < 0.05	< 0.05
Aliphatic VPH >C6-C7	HS_2D_AL	U		mg/kg	0.05	< 0.05	[C] < 0.05	< 0.05
Aliphatic VPH >C7-C8	HS_2D_AL	U		mg/kg	0.05	< 0.05	[C] < 0.05	< 0.05
Aliphatic VPH >C6-C8 (Sum)	HS_2D_AL	N		mg/kg	0.10	< 0.10	[C] < 0.10	< 0.10
Aliphatic VPH >C8-C10	HS_2D_AL	U		mg/kg	0.05	< 0.05	[C] < 0.05	< 0.05
Total Aliphatic VPH >C5-C10	HS_2D_AL	U	2780	mg/kg	0.25	< 0.25	[C] < 0.25	< 0.25
Aliphatic EPH >C10-C12 MC	EH_2D_AL_#1	М		mg/kg	2.00	< 2.0	[C] < 2.0	< 2.0
Aliphatic EPH >C12-C16 MC	EH_2D_AL_#1	M		mg/kg	1.00	< 1.0	[C] 2.0	< 1.0
Aliphatic EPH >C16-C21 MC	EH_2D_AL_#1	М		mg/kg	2.00	< 2.0	[C] < 2.0	< 2.0
Aliphatic EPH >C21-C35 MC	EH_2D_AL_#1	M		mg/kg		10	[C] < 3.0	< 3.0
Aliphatic EPH >C35-C40 MC	EH_2D_AL_#1	N	2690	mg/kg	10.00	< 10	[C] < 10	< 10

Client: HSP Consulting Engineers Limited				itest Jo		24-27162	24-27162	24-27162
Quotation No.:		Ch		t Samp		1855664	1855665	1855666
			Sample Location:			WS107	WS109	TP104
		Sample Type:				SOIL	SOIL	SOIL
				op Dep		0.10	0.40	0.10
			Botte	om Dep	th (m):	0.20	0.50	0.20
				Date Sa		14-Aug-2024	14-Aug-2024	14-Aug-2024
				Asbesto				
Determinand	HWOL Code	Accred.						
Total Aliphatic EPH >C10-C35 MC	EH_2D_AL_#1	М		mg/kg		12	[C] < 5.0	< 5.0
Total Aliphatic EPH >C10-C40 MC	EH_2D_AL_#1	N		mg/kg		12	[C] < 10	< 10
Aromatic VPH >C5-C7	HS_2D_AR	U		mg/kg		< 0.05	[C] < 0.05	< 0.05
Aromatic VPH >C7-C8	HS_2D_AR	U		mg/kg		< 0.05	[C] < 0.05	< 0.05
Aromatic VPH >C8-C10	HS_2D_AR	U		mg/kg		< 0.05	[C] < 0.05	< 0.05
Total Aromatic VPH >C5-C10	HS_2D_AR	U		mg/kg		< 0.25	[C] < 0.25	< 0.25
Aromatic EPH >C10-C12 MC	EH_2D_AR_#1	U		mg/kg		< 1.0	[C] < 1.0	< 1.0
Aromatic EPH >C12-C16 MC	EH_2D_AR_#1	U		mg/kg		< 1.0	[C] < 1.0	< 1.0
Aromatic EPH >C16-C21 MC	EH_2D_AR_#1	U		mg/kg		5.8	[C] 3.8	4.4
Aromatic EPH >C21-C35 MC	EH_2D_AR_#1	U		mg/kg		33	[C] 3.0	2.8
Aromatic EPH >C35-C40 MC	EH_2D_AR_#1	N		mg/kg		9.3	[C] < 1.0	< 1.0
Total Aromatic EPH >C10-C35 MC	EH_2D_AR_#1	U		mg/kg		39	[C] 6.8	7.2
Total Aromatic EPH >C10-C40 MC	EH_2D_AR_#1	N		mg/kg		49	[C] < 10	< 10
Total VPH >C5-C10	HS_2D_Total	U		mg/kg		< 0.50	[C] < 0.50	< 0.50
Total EPH >C10-C35 MC	EH_2D_Total_#1	U		mg/kg		51	[C] 11	< 10
Total EPH >C10-C40 MC	EH_2D_Total_#1	N		mg/kg		61	[C] 11	< 10
LOI		М	2610	%	0.10	13	6.8	4.0
Organic Matter		М	2625	%	0.40	10	3.1	2.6
Total Organic Carbon		М	2625	%	0.20	6.0		1.5
Aliphatic TPH >C5-C6	EH_2D_AL_#1	N		mg/kg	1.0	< 1.0		< 1.0
Aliphatic TPH >C6-C8	EH_2D_AL_#1	N		mg/kg	1.0	< 1.0		< 1.0
Aliphatic TPH >C8-C10	EH_2D_AL_#1	N		mg/kg	1.0	< 1.0		< 1.0
Aliphatic TPH >C10-C12	EH_2D_AL_#1	N		mg/kg	1.0	< 1.0		< 1.0
Aliphatic TPH >C12-C16	EH_2D_AL_#1	N		mg/kg	1.0	< 1.0		< 1.0
Aliphatic TPH >C16-C21	EH_2D_AL_#1	N		mg/kg	1.0	< 1.0		< 1.0
Aliphatic TPH >C21-C35	EH_2D_AL_#1	N		mg/kg	1.0	10		< 1.0
Aliphatic TPH >C35-C44	EH_2D_AL_#1	N		mg/kg	1.0	12		3.9
Total Aliphatic Hydrocarbons	EH_2D_AL_#1	N		mg/kg	5.0	22		< 5.0
Aromatic TPH >C5-C7	EH_2D_AR_#1	N		mg/kg	1.0	< 1.0		< 1.0
Aromatic TPH >C7-C8	EH_2D_AR_#1	N		mg/kg	1.0	< 1.0		< 1.0
Aromatic TPH >C8-C10	EH_2D_AR_#1	N		mg/kg	1.0	< 1.0		< 1.0
Aromatic TPH >C10-C12	EH_2D_AR_#1	N		mg/kg	1.0	< 1.0		< 1.0
Aromatic TPH >C12-C16	EH_2D_AR_#1	N		mg/kg	1.0	< 1.0		< 1.0
Aromatic TPH >C16-C21	EH_2D_AR_#1	N		mg/kg	1.0	5.8		4.4
Aromatic TPH >C21-C35	EH_2D_AR_#1	N		mg/kg	1.0	33		2.8
Aromatic TPH >C35-C44	EH_2D_AR_#1	N		mg/kg	1.0	11		< 1.0
Total Aromatic Hydrocarbons	EH_2D_AR_#1	N		mg/kg	5.0	51		7.1
Total Petroleum Hydrocarbons	EH_2D_Total_#1	N		mg/kg	10.0	73		11
Benzene		M		μg/kg	1.0	< 1.0	[C] < 1.0	< 1.0
Toluene	ļ	M		μg/kg	1.0	< 1.0	[C] < 1.0	< 1.0
Ethylbenzene		M	2760	μg/kg	1.0	< 1.0	[C] < 1.0	< 1.0

Client: HSP Consulting Engineers Limited			Chem	test Jo	b No.:	24-27162	24-27162	24-27162
Quotation No.:		Ch	emtes	t Samp	le ID.:	1855664	1855665	1855666
			Sar	nple Lo	cation:	WS107	WS109	TP104
				Sample		SOIL	SOIL	SOIL
				op Dep		0.10	0.40	0.10
				om Dep		0.20	0.50	0.20
						14-Aug-2024	14-Aug-2024	14-Aug-2024
				Asbesto				
Determinand	HWOL Code	Accred.						
m & p-Xylene		M		μg/kg	1.0	< 1.0	[C] < 1.0	< 1.0
o-Xylene		M		μg/kg	1.0	< 1.0	[C] < 1.0	< 1.0
Methyl Tert-Butyl Ether		M		μg/kg	1.0	< 1.0	[C] < 1.0	< 1.0
Naphthalene		M		mg/kg	0.10	1.4	< 0.10	< 0.10
Acenaphthylene		N	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Acenaphthene		M		mg/kg	0.10	< 0.10	< 0.10	< 0.10
Fluorene		M		mg/kg	0.10	0.30	< 0.10	< 0.10
Phenanthrene		M	2800	mg/kg	0.10	2.8	< 0.10	< 0.10
Anthracene		M		mg/kg	0.10	0.77	< 0.10	< 0.10
Fluoranthene		M	2800	mg/kg	0.10	5.2	< 0.10	< 0.10
Pyrene		M		mg/kg	0.10	3.8	< 0.10	< 0.10
Benzo[a]anthracene		M	2800	mg/kg	0.10	2.3	< 0.10	< 0.10
Chrysene		M		mg/kg	0.10	2.3	< 0.10	< 0.10
Benzo[b]fluoranthene		M		mg/kg	0.10	2.6	< 0.10	< 0.10
Benzo[k]fluoranthene		M		mg/kg	0.10	1.1	< 0.10	< 0.10
Benzo[a]pyrene		M		mg/kg	0.10	2.0	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene		M		mg/kg	0.10	1.2	< 0.10	< 0.10
Dibenz(a,h)Anthracene		N	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene		M		mg/kg	0.10	1.2	< 0.10	< 0.10
Total Of 16 PAH's		N		mg/kg	2.0	27	< 2.0	< 2.0
Demeton-O		N		mg/kg	0.20	< 0.20		< 0.20
Phorate		N		mg/kg	0.20	< 0.20		< 0.20
Demeton-S		N	2820	mg/kg	0.20	< 0.20		< 0.20
Disulfoton		N		mg/kg	0.20	< 0.20		< 0.20
Fenthion		N	2820	mg/kg	0.20	< 0.20		< 0.20
Trichloronate		N		mg/kg	0.20	< 0.20		< 0.20
Prothiofos		N	2820	mg/kg	0.20	< 0.20		< 0.20
Fensulphothion		N		mg/kg	0.20	< 0.20		< 0.20
Sulprofos		N	2820	mg/kg	0.20	< 0.20		< 0.20
Azinphos-Methyl		N		mg/kg	0.20	< 0.20		< 0.20
Coumaphos		N	2820	mg/kg	0.20	< 0.20		< 0.20
Atraton		N	2830	mg/kg	0.20	< 0.20		< 0.20
Prometon		N	2830	mg/kg	0.20	< 0.20		< 0.20
Simazine		N	2830	mg/kg	0.20	< 0.20		< 0.20
Atrazine		N		mg/kg	0.20	< 0.20		< 0.20
Propazine		N		mg/kg	0.20	< 0.20		< 0.20
Terbuthylazine		N		mg/kg	0.20	< 0.20		< 0.20
Secbumeton		N	2830	mg/kg	0.20	< 0.20		< 0.20
Simetryn		N		mg/kg	0.20	< 0.20		< 0.20
Ametryn		N		mg/kg	0.20	< 0.20		< 0.20
Prometryn		N		mg/kg	0.20	< 0.20		< 0.20

Client: HSP Consulting Engineers Limited				itest Jo		24-27162	24-27162	24-27162
Quotation No.:		Ch		t Samp		1855664	1855665	1855666
			Sample Location:			WS107	WS109	TP104
				Sample		SOIL	SOIL	SOIL
				op Dep			0.40	0.10
			Botte	om Dep	th (m):	0.20	0.50	0.20
				Date Sai		14-Aug-2024	14-Aug-2024	14-Aug-2024
				Asbesto				
Determinand	HWOL Code	Accred.	SOP	Units	LOD			
Terbutryn		N		mg/kg		< 0.20		< 0.20
Alpha-HCH		N		mg/kg		< 0.20		< 0.20
Gamma-HCH (Lindane)		N		mg/kg		< 0.20		< 0.20
Beta-HCH		N	2840	mg/kg	0.20	< 0.20		< 0.20
Delta-HCH		N	2840	mg/kg	0.20	< 0.20		< 0.20
Heptachlor		N		mg/kg		< 0.20		< 0.20
Aldrin		N		mg/kg		< 0.20		< 0.20
Heptachlor Epoxide		N	2840	mg/kg	0.20	< 0.20		< 0.20
Gamma-Chlordane		N	2840	mg/kg	0.20	< 0.20		< 0.20
Alpha-Chlordane		N		mg/kg		< 0.20		< 0.20
Endosulfan I		N	2840	mg/kg	0.20	< 0.20		< 0.20
4,4-DDE		N		mg/kg		< 0.20		< 0.20
Dieldrin		N	2840	mg/kg	0.20	< 0.20		< 0.20
Endrin		N		mg/kg		< 0.20		< 0.20
4,4-DDD		N		mg/kg		< 0.20		< 0.20
Endosulfan II		N	2840	mg/kg	0.20	< 0.20		< 0.20
Endrin Aldehyde		N	2840	mg/kg	0.20	< 0.20		< 0.20
4,4-DDT		N		mg/kg		< 0.20		< 0.20
Endosulfan Sulphate		N		mg/kg		< 0.20		< 0.20
Methoxychlor		Ν		mg/kg		< 0.20		< 0.20
Endrin Ketone		N	2840	mg/kg	0.20	< 0.20		< 0.20
Total Phenols		М	2920	mg/kg	0.10	< 0.10	< 0.10	< 0.10

AA-Split Chromatogram on Soil Sample: 1855658

10 yar ioxi:EPH;Raw data:2024;03 Augus NGC10/2024-09-26;F or 11855658 24-27:52 5-5 sweek trivid [identified]

205-6

5.8

5.8

5.8

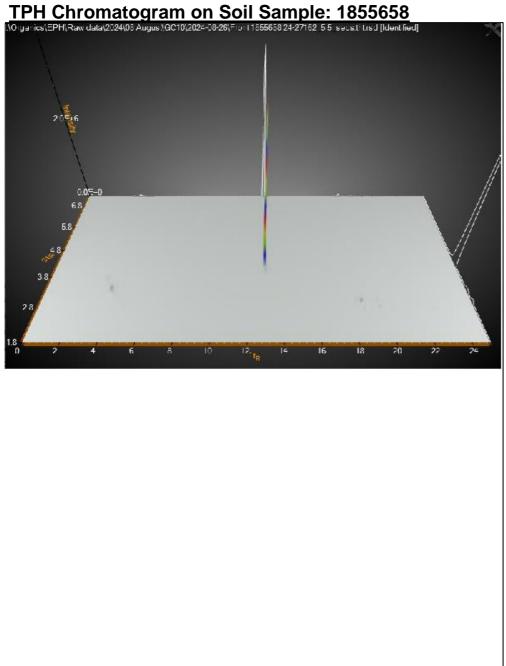
1.8

2.4

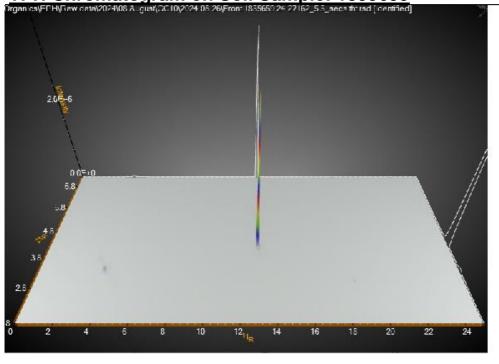
4.6

5.10

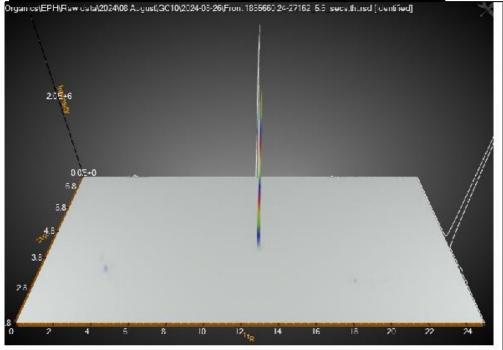
1.2

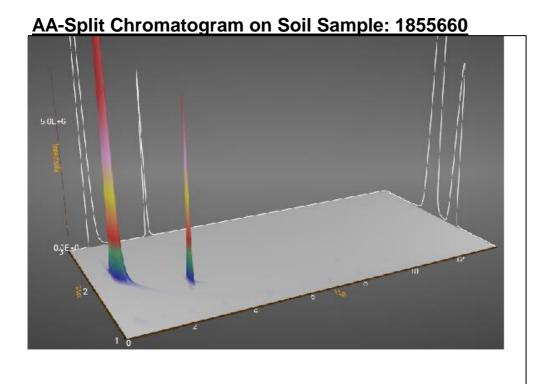

1.4

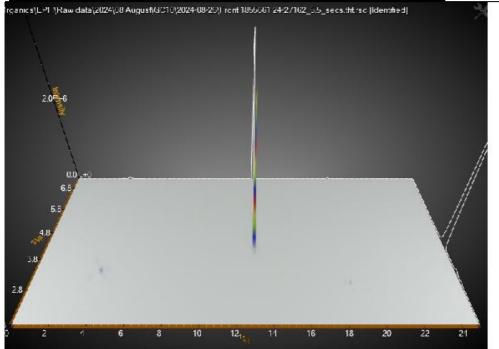
1.6

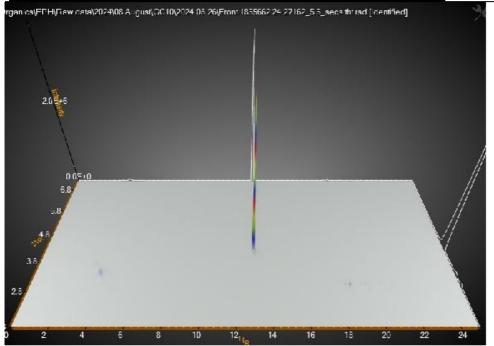

1.8

2.2

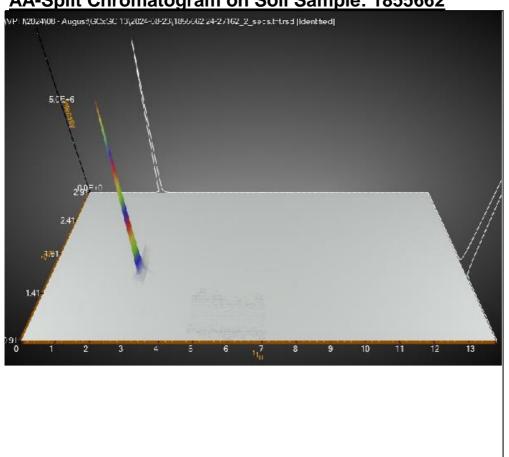

2.4

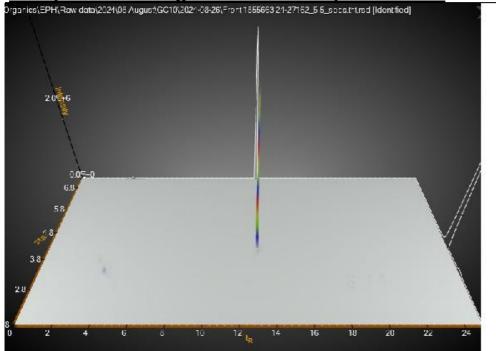


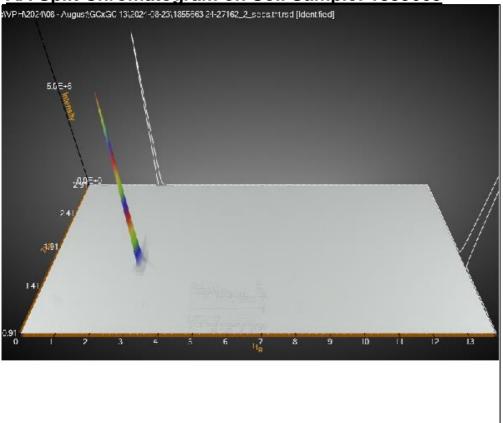

TPH Chromatogram on Soil Sample: 1855659
Organ cs/FEH/Gew cata/2024/08 August/3010/2024 08 26/From: 1835650 24 27 162_5 5_secs throad [centified]



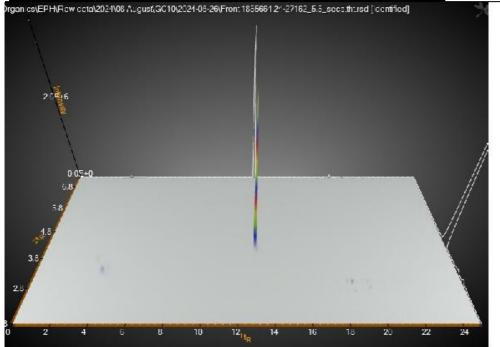
AA-Split Chromatogram on Soil Sample: 1855660 Organics(EPH)Raw data/2024/08 August(3C10/2024-08-26(Fron: 1855660 24-27162 5.5 secs.thursd [dentified]

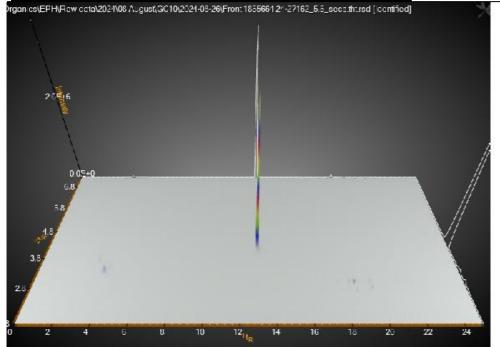




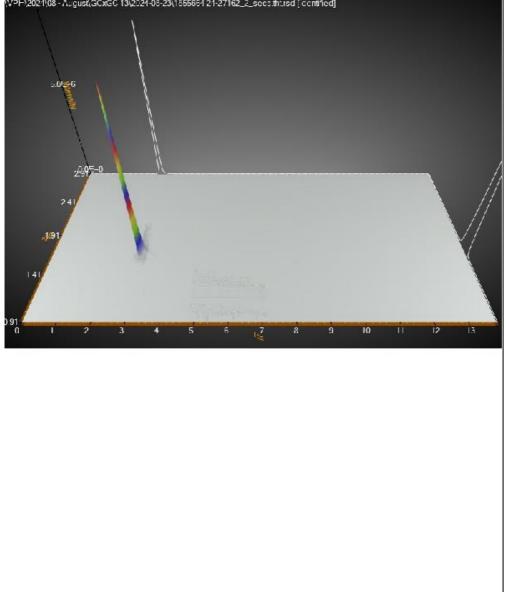


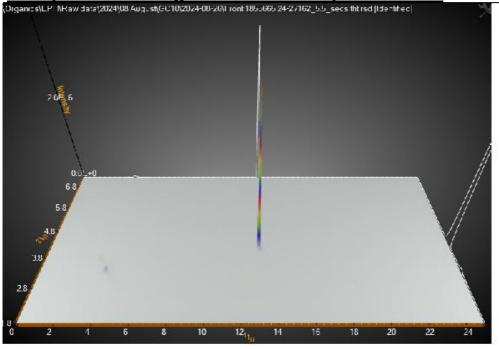
AA-Split Chromatogram on Soil Sample: 1855662 . VPT N2024\08 - August\GCxGC 13\z024-08-23\1895-082 24-27162_2_secs.ht.rsd [identhed]

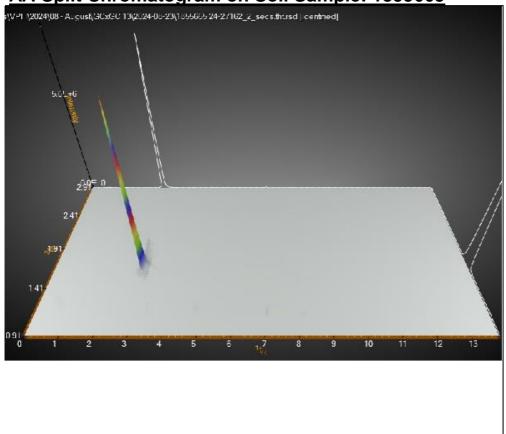




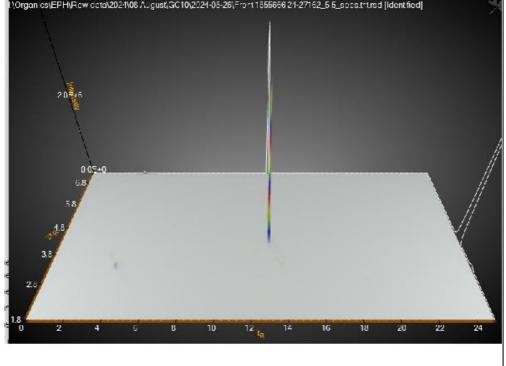
AA-Split Chromatogram on Soil Sample: 1855664

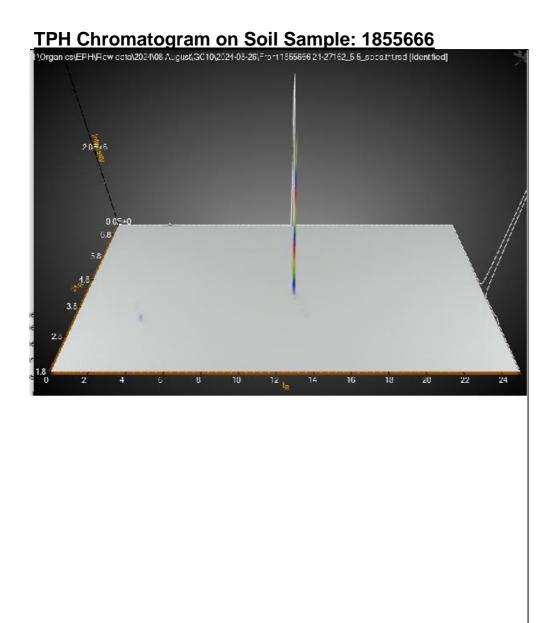

brigan cstEPH\Row ccta\2024\08 August,GC10\2024-05-26\Front 18556612/-27162_5.5_secs.th.rsd [ccntified]


TPH Chromatogram on Soil Sample: 1855664


AA-Split Chromatogram on Soil Sample: 1855664 . |VPH\2021\08 - August\GCxGC 13\2021-08-23\1855664 24-27162_2_secs.thtrsd [dontfied]

AA-Split Chromatogram on Soil Sample: 1855665
(Organics)LP | NRaw data | 2024 (08 Aug., st) (00 10 (2024-08-20) Front 185-066-24-27162_5.5_secs tht rsd | Identified




AA-Split Chromatogram on Soil Sample: 1855665 s(VPI 1/2024)(08 - August(GCxGC 10/(2024-06-20/1655665 24-27162_2_secs.tht.rsd | centined)

AA-Split Chromatogram on Soil Sample: 1855666

Norgan cs/EPH/Row ccta/2024/08 August/GC10/2024-08-26/Front1855666 24-27162_5 5_sccs.tr.trsd [identified]

AA-Split Chromatogram on Soil Sample: 1855666

(VPT I/2024/00 - Aug. st/GCxGC 13/2024-00-23/1855665 24-2 /162_2_secs thtrsd ||denthec|

12

Results - Topsoil Report

BS3882:2015

Chemtest Job No.: 24-27162 Chemtest Sample ID.: 1855664

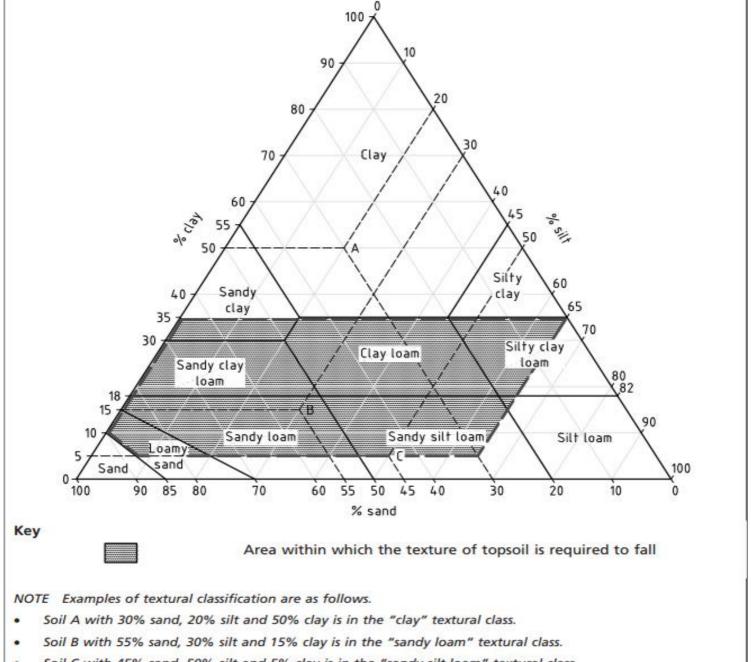
Client Sample Ref.: Sample Location: WS107 Client Sample ID.: Top Depth (m): 0.10 Bottom Depth (m): 0.20 Date Sampled: 14-Aug-2024

Time Sampled:

Time Sampled:												
Parameter	Units	Mι	Multipurpose Range		KVEII		Result	Result Compliant with Multipurpose Range? (Y/N)		Compliant with Specific Purpose Range? (Y/N)		
Texture							Acid	Low F	Calc.			
Clay content (Sub Contracted)	%				15							
Silt content (Sub Contracted)	%				47							
Sand content (Sub Contracted)	%				38							
Soil texture class		See A	Attached	Chart	Sandy Silt Loam	YES						
Mass Loss on Ignition												
Clay 5-20%			3.0-20		9.4	YES	YES	YES	YES			
Clay 20-35%			5.0-20		9.4	160	163	TES	TES			
Stone Content	% m/m											
>2mm (Sub Contracted)			0-30		6.4	YES						
>20mm (Sub Contracted)			0-10		< 100	YES						
>50mm (Sub Contracted)		0		< 100	YES							
Soil pH value			5.5-8.5		8.9	NO	NO	YES	YES			
Carbonate (Calcareous only)	%				1.8				YES			
Electrical Conductivity	μS/cm	If >3	3300 do	ESP	I/S	NO						
Available Nutrient Content												
Nitrogen %			>0.15		0.47	YES	YES		YES			
Extractable phosphorus	mg/l		16-140		I/S	NO	NO	NO	NO			
Extractable potassium	mg/l		121-150	C	I/S	NO	NO		NO			
Extractable magnesium	mg/l		51-600		I/S	NO	NO		NO			
Carbon : Nitrogen Ratio			<20:1		11.7/1	YES	YES	YES	YES			
Exchangeable sodium	%		<15		I/S							
Available Calcium	mg/l				I/S							
Available Sodium	mg/l				I/S							
Phytotoxic Contaminants (by soil pH)		< 6.0	6.0-7.0	> 7.0								
Zinc (Nitric Acid extract)	mg/kg	<200		<300	60	YES						
Copper (Nitric Acid extract)	mg/kg	<100	<135	<200	18	YES						
Nickel (Nitric Acid extract)	mg/kg	<60 <75 <110		16	YES							
Visible Contaminants	% mm											
>2mm			<0.5		0.000	YES						
of which plastics		<0.25		0.000	YES							
man-made sharps		Z	zero in 1kg		0.000	YES						

Results - Topsoil Report

BS3882:2015


Chemtest Job No.: 24-27162 Chemtest Sample ID.: 1855666

Client Sample Ref.:
Sample Location: TP104
Client Sample ID.:
Top Depth (m): 0.10
Bottom Depth (m): 0.20
Date Sampled: 14-Aug-2024

Time Sampled:

Time Sampled:											
Parameter	Units	Μι	Multipurpose Range				Result	Compliant with Multipurpose Range? (Y/N)	Compliant with Specific Purpose Range? (Y/N)		
Texture							Acid	Low F	Calc.		
Clay content (Sub Contracted)	%				23						
Silt content (Sub Contracted)	%				52						
Sand content (Sub Contracted)	%				26						
Soil texture class		See A	Attached	Chart	Clay Loam	YES					
Mass Loss on Ignition											
Clay 5-20%			3.0-20		4.4	NO	NO	YES	NO		
Clay 20-35%			5.0-20		4.4	NO	NO	TES	NO		
Stone Content	% m/m										
>2mm (Sub Contracted)			0-30		15	YES					
>20mm (Sub Contracted)			0-10		8.9	YES					
>50mm (Sub Contracted)			0		< 0.10	YES					
Soil pH value			5.5-8.5		8.9	NO	NO	YES	YES		
Carbonate (Calcareous only)	%				2.4				YES		
Electrical Conductivity	μS/cm	If >3	3300 do	ESP	4600	NO					
Available Nutrient Content											
Nitrogen %			>0.15		0.14	NO	NO		NO		
Extractable phosphorus	mg/l		16-140		12	NO	NO	YES	NO		
Extractable potassium	mg/l		121-150	0	23	NO	NO		NO		
Extractable magnesium	mg/l		51-600		75	YES	YES		YES		
Carbon : Nitrogen Ratio			<20:1		18.4/1	YES	YES	YES	YES		
Exchangeable sodium	%		<15		2.1						
Available Calcium	mg/l				400						
Available Sodium	mg/l				52						
Phytotoxic Contaminants (by soil pH)		< 6.0	6.0-7.0	> 7.0							
Zinc (Nitric Acid extract)	mg/kg	<200	<200	<300	40	YES					
Copper (Nitric Acid extract)	mg/kg	<100	<135	<200	12	YES					
Nickel (Nitric Acid extract)	mg/kg	<60	<75	<110	15	YES					
Visible Contaminants	% mm										
>2mm			<0.5		0.000	YES					
of which plastics		<0.25		0.000	YES						
man-made sharps		Z	zero in 1kg		0.000	YES					

Topsoil: Texture Classification Chart

Soil C with 45% sand, 50% silt and 5% clay is in the "sandy silt loam" textural class.

Permission to reproduce extracts from BS 3882:2015 is granted by BSI.

British Standards can be obtained in PDF or hard copy formats from the BSI online shop: www.bsigroup.com/Shop or by contacting BSI Customer Services for hardcopies only: Tel: +44 (0)20 8996 9001, Email: cservices@bsigroup.com.

Deviations

In accordance with UKAS Policy on Deviating Samples TPS 63. Chemtest have a procedure to ensure 'upon receipt of each sample a competent laboratory shall assess whether the sample is suitable with regard to the requested test(s)'. This policy and the respective holding times applied, can be supplied upon request. The reason a sample is declared as deviating is detailed below. Where applicable the analysis remains UKAS/MCERTs accredited but the results may be compromised.

Sample:	Sample Ref:	Sample ID:	Sample Location:	Sampled Date:	Deviation Code(s):	Containers Received:
1855661			WS103	14-Aug-2024	С	Plastic Tub 500g
1855665			WS109	14-Aug-2024	С	Plastic Tub 500g

Test Methods

SOP	Title	Parameters included	Method summary	Water Accred.
	Organonitrogen (O-N) Pesticides in Waters by GC- MS	Organonitrogen pesticide representative suite including Triazines etc, plus client specific determinands	Solvent extraction / GCMS detection	
2010	pH Value of Soils	pH at 20°C	pH Meter	
2020	Electrical Conductivity	Electrical conductivity (EC) of aqueous extract or calcium sulphate solution for topsoil	Measurement of the electrical resistance of a 2:1 water/soil extract.	
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <30°C.	
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930	
2115	Total Nitrogen in Soils	Nitrogen	Determination by elemental analyser	
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES	
2175	Total Sulphur in Soils	Total Sulphur	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.	
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry	
2260	Carbonate	Carbonate	Titration	
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.	
2325	Sulphide in Soils	Sulphide	Steam distillation with sulphuric acid / analysis by 'Aquakem 600' Discrete Analyser, using N,N–dimethyl-p-phenylenediamine.	
2400	Cations	Cations	ICP-MS	
2420	Phosphate	Phosphate	Spectrophotometry - Discrete analyser	
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.	
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.	
2455	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.	
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.	
2610	Loss on Ignition	loss on ignition (LOI)	Determination of the proportion by mass that is lost from a soil by ignition at 550°C.	
2620	LOI 440	LOI 440 Trommel Fines	Determination of the proportion by mass that is lost from a soil by ignition at 440°C.	
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.	
2680	TPH A/A Split	Aliphatics: >C5-C6, >C6-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44Aromatics: >C5-C7, >C7-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44	Dichloromethane extraction / GCxGC FID detection	
2690	EPH A/A Split	Aliphatics: >C10-C12, >C12-C16, >C16-C21, >C21- C35, >C35- C40 Aromatics: >C10-C12, >C12-C16, >C16- C21, >C21- C35, >C35- C40	Acetone/Heptane extraction / GCxGC FID detection	
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.	
2780	VPH A/A Split	Aliphatics: >C5-C6, >C6-C7,>C7-C8,>C8-C10 Aromatics: >C5-C7,>C7-C8,>C8-C10	Water extraction / Headspace GCxGC FID detection	
2790	Semi-Volatile Organic Compounds (SVOCs) in Soils by GC-MS	Semi-volatile organic compounds(cf. USEPA Method 8270)	Acetone/Hexane extraction / GC-MS	

Test Methods

SOP	Title	Parameters included	Method summary	Water Accred.
2800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS	
2820	Organophosphorus (O-P) Pesticides in Soils by GC-MS	Organophosphorus pesticide representative suite including Parathion, Malathion etc, plus client specific determinands	Dichloromethane extraction / GC-MS	
2830	Organonitrogen (O-N) Pesticides in Soils by GC-MS	Organonitrogen pesticide representative suite including Triazines etc, plus client specific determinands	Dichloromethane extraction / GC-MS	
2840	Organochlorine (O-Cl) Pesticides in Soils by GC-MS	Organochlorine pesticide representative suite including DDT and its metabolites, 'drins' and HCH etc, plus client specific determinands	Dichloromethane extraction / GC-MS	
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1-Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.	

Report Information

Key UKAS accredited Μ MCERTS and UKAS accredited Unaccredited This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Т This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated "less than" < "greater than" > SOP Standard operating procedure LOD Limit of detection

This report shall not be reproduced except in full, and only with the prior approval of the laboratory.

Any comments or interpretations are outside the scope of UKAS accreditation.

The Laboratory is not accredited for any sampling activities and reported results relate to the samples 'as received' at the laboratory.

Uncertainty of measurement for the determinands tested are available upon request .

None of the results in this report have been recovery corrected.

All results are expressed on a dry weight basis.

The following tests were analysed on samples 'as received' and the results subsequently corrected to a dry weight basis EPH, VPH, TPH, BTEX, VOCs, SVOCs, PCBs, Phenols.

For all other tests the samples were dried at ≤ 30°C prior to analysis.

All Asbestos testing is performed at the indicated laboratory .

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1.

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt.

All water samples will be retained for 14 days from the date of receipt.

Charges may apply to extended sample storage.

Water Sample Category Key for Accreditation

DW - Drinking Water

GW - Ground Water

LE - Land Leachate

Report Information

- NA Not Applicable
- PL Prepared Leachate
- PW Processed Water
- RE Recreational Water
- SA Saline Water
- SW Surface Water
- TE Treated Effluent
- TS Treated Sewage
- UL Unspecified Liquid

Clean Up Codes

- NC No Clean Up
- MC Mathematical Clean Up
- FC Florisil Clean Up

HWOL Acronym System

- HS Headspace analysis
- EH Extractable hydrocarbons i.e. everything extracted by the solvent
- CU Clean-up e.g. by Florisil, silica gel
- 1D GC Single coil gas chromatography
- Total Aliphatics & Aromatics
- AL Aliphatics only
- AR Aromatic only
- 2D GC-GC Double coil gas chromatography
- #1 EH_2D_Total but with humics mathematically subtracted
- #2 EH_2D_Total but with fatty acids mathematically subtracted
- + Operator to indicate cumulative e.g. EH+EH_Total or EH_CU+HS_Total

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070

Email: info@chemtest.com

Amended Report

Report No.: 24-30803-2

Initial Date of Issue: 04-Oct-2024 Date of Re-Issue: 04-Oct-2024

Re-Issue Details:

This report has been revised and directly

supersedes 24-30803-1 in its entirety

Client HSP Consulting Engineers Limited

Client Address: Lawrence House

Meadowbank Way

Eastwood

Nottinghamshire

NG16 3SB

Contact(s): Harry Evans

Matthew Kent

Project C4103 Coleg Sir Gar

Quotation No.: Date Received: 24-Sep-2024

Order No.: Date Instructed: 24-Sep-2024

No. of Samples: 1

Turnaround (Wkdays): 9 Results Due: 04-Oct-2024

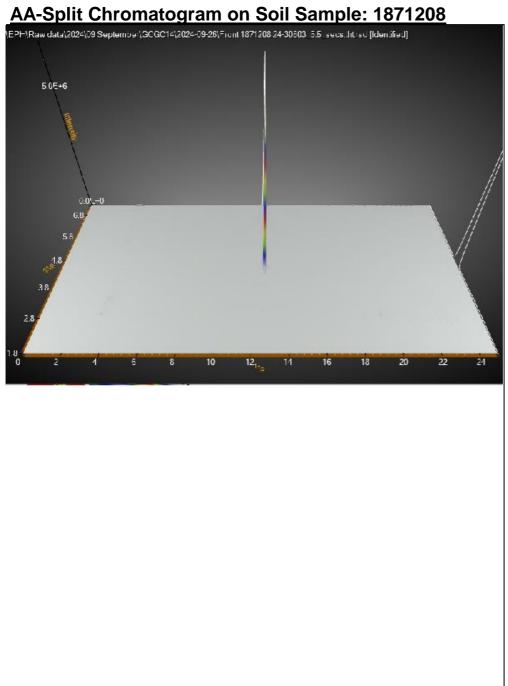
Date Approved: 01-Oct-2024 Subcon Results Due: 04-Oct-2024

Approved By:

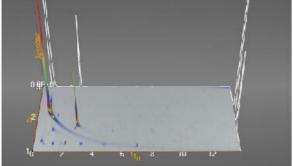
Details: David Smith, Technical Director

For details about application of accreditation to specific matrix types, please refer to the Table at the back of this report

Results - Soil


Project: C4103 Coleg Sir Gar

Client: HSP Consulting Engineers Limited			Chem	test Jo	b No.:	24-30803	
Quotation No.:		Ch	emtes	t Samp	le ID.:	1871208	
			Sar	nple Lo	cation:	HDP2	
				Sample	Type:	SOIL	
			Т	op Dep	th (m):	0.10	
		Bottom Depth (m)			th (m):	0.20	
				Date Sai	mpled:	23-Sep-2024	
Determinand	HWOL Code	Accred.	SOP		LOD		
Moisture		N	2030	%	0.020	30	
Soil Colour		N	2040		N/A	Brown	
Other Material		N	2040		N/A	Stones, Roots and leafs	
Soil Texture		N	2040		N/A	Loam	
Chromatogram EPH	EH_2D_Total_#1	N			N/A	See Attached	
Chromatogram VPH	HS_2D_Total	Ν			N/A	See Attached	
pH at 20C		М	2010		4.0	6.0	
Boron (Hot Water Soluble)		М		mg/kg	0.40	0.40	
Sulphate (2:1 Water Soluble) as SO4		М	2120	g/l	0.010	< 0.010	
Total Sulphur		U	2175	%	0.010	0.080	
Cyanide (Total)		M		mg/kg		0.60	
Sulphide (Easily Liberatable)		N		mg/kg	0.50	3.2	
Sulphate (Total)		U		mg/kg	100	3000	
Arsenic		М		mg/kg	0.5	13	
Cadmium		М		mg/kg	0.10	< 0.10	
Chromium		М	2455	mg/kg	0.5	23	
Antimony		N		mg/kg		< 2.0	
Copper		M	2455	mg/kg	0.50	13	
Mercury		М		mg/kg		0.11	
Nickel		М	2455	mg/kg	0.50	15	
Lead		М		mg/kg		41	
Selenium		M	2455	mg/kg	0.25	0.87	
Vanadium		U	2455	mg/kg	0.5	33	
Zinc		M		mg/kg		70	
Chromium (Hexavalent)		N		mg/kg		< 0.50	
Aliphatic VPH >C5-C6	HS_2D_AL	U		mg/kg		< 0.05	
Aliphatic VPH >C6-C7	HS_2D_AL	U		mg/kg		< 0.05	
Aliphatic VPH >C7-C8	HS_2D_AL	U		mg/kg		< 0.05	
Aliphatic VPH >C6-C8 (Sum)	HS_2D_AL	N		mg/kg		< 0.10	
Aliphatic VPH >C8-C10	HS_2D_AL	U		mg/kg		< 0.05	
Total Aliphatic VPH >C5-C10	HS_2D_AL	U		mg/kg		< 0.25	
Aliphatic EPH >C10-C12 MC	EH_2D_AL_#1	М	2690			2.4	
Aliphatic EPH >C12-C16 MC	EH_2D_AL_#1	M		mg/kg		< 1.0	
Aliphatic EPH >C16-C21 MC	EH_2D_AL_#1	М		mg/kg		< 2.0	
Aliphatic EPH >C21-C35 MC	EH_2D_AL_#1	М		mg/kg		27	
Aliphatic EPH >C35-C40 MC	EH_2D_AL_#1	N		mg/kg		14	
Total Aliphatic EPH >C10-C35 MC	EH_2D_AL_#1	М		mg/kg		30	
Total Aliphatic EPH >C10-C40 MC	EH_2D_AL_#1	N		mg/kg		44	
Aromatic VPH >C5-C7	HS_2D_AR	U		mg/kg		< 0.05	
Aromatic VPH >C7-C8	HS_2D_AR	U		mg/kg		< 0.05	
Aromatic VPH >C8-C10	HS_2D_AR	J	2780	mg/kg	0.05	< 0.05	


Results - Soil

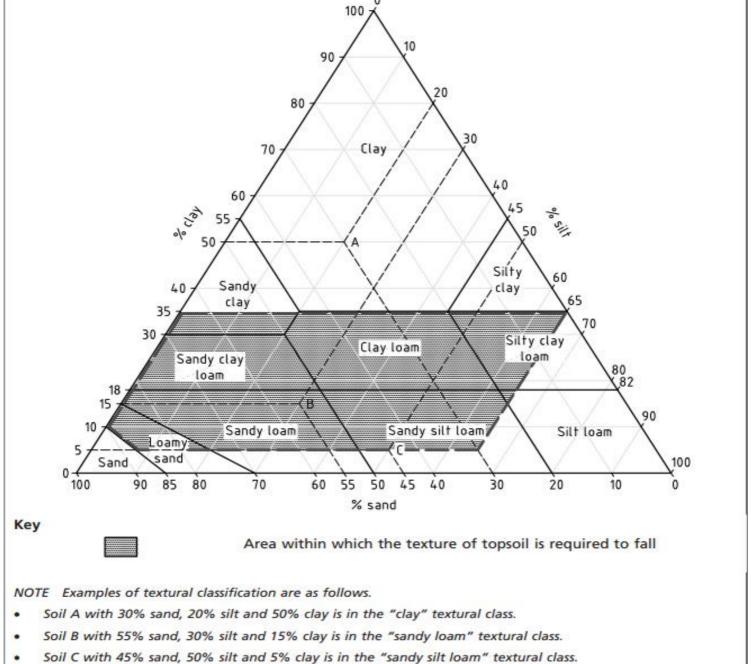
Project: C4103 Coleg Sir Gar

Client: HSP Consulting Engineers Limited			Chem	test Jo	b No.:	24-30803
Quotation No.:		Ch	emtes	t Samp	le ID.:	1871208
			Sar	nple Lo	cation:	HDP2
				Sample	Туре:	SOIL
			T	op Dep	th (m):	0.10
			Botto	om Dep	th (m):	0.20
				Date Sa	mpled:	23-Sep-2024
Determinand	HWOL Code	Accred.	SOP	Units	LOD	
Total Aromatic VPH >C5-C10	HS_2D_AR	U	2780	mg/kg	0.25	< 0.25
Aromatic EPH >C10-C12 MC	EH_2D_AR_#1	U	2690	mg/kg	1.00	< 1.0
Aromatic EPH >C12-C16 MC	EH_2D_AR_#1	U	2690	mg/kg	1.00	< 1.0
Aromatic EPH >C16-C21 MC	EH_2D_AR_#1	U	2690	mg/kg	2.00	7.1
Aromatic EPH >C21-C35 MC	EH_2D_AR_#1	U	2690	mg/kg	2.00	< 2.0
Aromatic EPH >C35-C40 MC	EH_2D_AR_#1	N	2690	mg/kg	1.00	21
Total Aromatic EPH >C10-C35 MC	EH_2D_AR_#1	U	2690	mg/kg	5.00	9.8
Total Aromatic EPH >C10-C40 MC	EH_2D_AR_#1	N	2690	mg/kg	10.00	31
Total VPH >C5-C10	HS_2D_Total	U	2780	mg/kg	0.50	< 0.50
Total EPH >C10-C35 MC	EH_2D_Total_#1	U	2690	mg/kg	10.00	40
Total EPH >C10-C40 MC	EH_2D_Total_#1	N	2690	mg/kg	10.00	75
LOI		M	2610	%	0.10	11
Organic Matter		М	2625	%	0.40	6.0
Benzene		M	2760	μg/kg	1.0	< 1.0
Toluene		M	2760	μg/kg	1.0	< 1.0
Ethylbenzene		М	2760	μg/kg	1.0	< 1.0
m & p-Xylene		М	2760		1.0	< 1.0
o-Xylene		M	2760	μg/kg	1.0	< 1.0
Methyl Tert-Butyl Ether		М	2760	μg/kg	1.0	< 1.0
Naphthalene		М	2800	mg/kg	0.10	< 0.10
Acenaphthylene		N	2800	mg/kg	0.10	< 0.10
Acenaphthene		M	2800	mg/kg	0.10	< 0.10
Fluorene		М	2800	mg/kg	0.10	< 0.10
Phenanthrene		М	2800	mg/kg	0.10	< 0.10
Anthracene		М	2800	mg/kg	0.10	< 0.10
Fluoranthene		М		mg/kg		< 0.10
Pyrene		М	2800	mg/kg	0.10	< 0.10
Benzo[a]anthracene		М	2800	mg/kg	0.10	< 0.10
Chrysene		М		mg/kg		< 0.10
Benzo[b]fluoranthene		М		mg/kg		< 0.10
Benzo[k]fluoranthene		М		mg/kg		< 0.10
Benzo[a]pyrene		М		mg/kg		< 0.10
Indeno(1,2,3-c,d)Pyrene		М		mg/kg		< 0.10
Dibenz(a,h)Anthracene		N		mg/kg		< 0.10
Benzo[g,h,i]perylene		М	2800	mg/kg	0.10	< 0.10
Total Of 16 PAH's		N	2800	mg/kg	2.0	< 2.0
Total Phenois		M	2920	mg/kg	0.10	< 0.10

AA-Split Chromatogram on Soil Sample: 1871208

Results - Topsoil Report

BS3882:2015


Chemtest Job No.: 24-30803 Chemtest Sample ID.: 1871208

Client Sample Ref.:
Sample Location: HDP2
Client Sample ID.:
Top Depth (m): 0.10
Bottom Depth (m): 0.20
Date Sampled: 23-Sep-2024

Time Sampled:

Time Sampled:											
Parameter	Units	Μι	Multipurpose Range		I KVCII		Result	Compliant with Multipurpose Range? (Y/N)	Compliant with Specific Purpose Range? (Y/N)		
Texture							Acid	Low F	Calc.		
Clay content (Sub Contracted)	%				17						
Silt content (Sub Contracted)	%				53						
Sand content (Sub Contracted)	%				31						
Soil texture class		See A	Attached	Chart	Sandy Silt Loam	YES					
Mass Loss on Ignition											
Clay 5-20%			3.0-20		6.1	YES	YES	YES	YES		
Clay 20-35%			5.0-20		0.1	160	163	TES	TES		
Stone Content	% m/m										
>2mm (Sub Contracted)			0-30		16	YES					
>20mm (Sub Contracted)			0-10		< 0.10	YES					
>50mm (Sub Contracted)			0		< 0.10	YES					
Soil pH value			5.5-8.5		6.0	YES	NO	YES	NO		
Carbonate (Calcareous only)	%				0.60				NO		
Electrical Conductivity	μS/cm	If >3	3300 do	ESP	1900	YES					
Available Nutrient Content											
Nitrogen %			>0.15		0.62	YES	YES		YES		
Extractable phosphorus	mg/l		16-140		3.7	NO	NO	YES	NO		
Extractable potassium	mg/l		121-150	0	74	NO	NO		NO		
Extractable magnesium	mg/l		51-600		64	YES	YES		YES		
Carbon : Nitrogen Ratio			<20:1		5.7/1	YES	YES	YES	YES		
Exchangeable sodium	%		<15		0.62						
Available Calcium	mg/l				1900						
Available Sodium	mg/l				15						
Phytotoxic Contaminants (by soil pH)			6.0-7.0	> 7.0							
Zinc (Nitric Acid extract)	mg/kg	<200	<200	<300	180	YES					
Copper (Nitric Acid extract)	mg/kg	<100	<135	<200	13	YES					
Nickel (Nitric Acid extract)	mg/kg	<60	<75	<110	13	YES					
Visible Contaminants	% mm										
>2mm			<0.5		0.000	YES					
of which plastics		<0.25		0.000	YES						
man-made sharps		Z	ero in 1k	g	0.000	YES					
							_				

Topsoil: Texture Classification Chart

Permission to reproduce extracts from BS 3882:2015 is granted by BSI.

British Standards can be obtained in PDF or hard copy formats from the BSI online shop: www.bsigroup.com/Shop or by contacting BSI Customer Services for hardcopies only: Tel: +44 (0)20 8996 9001, Email: cservices@bsigroup.com.

Test Methods

SOP	Title	Parameters included	Method summary	Water Accred.
2010	pH Value of Soils	pH at 20°C	pH Meter	
2020	Electrical Conductivity	Electrical conductivity (EC) of aqueous extract or calcium sulphate solution for topsoil	Measurement of the electrical resistance of a 2:1 water/soil extract.	
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <30°C.	
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930	
2115	Total Nitrogen in Soils	Nitrogen	Determination by elemental analyser	
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES	
2175	Total Sulphur in Soils	Total Sulphur	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.	
2260	Carbonate	Carbonate	Titration	
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.	
2325	Sulphide in Soils	Sulphide	Steam distillation with sulphuric acid / analysis by 'Aquakem 600' Discrete Analyser, using N,N–dimethyl-p- phenylenediamine.	
2400	Cations	Cations	ICP-MS	
2420	Phosphate	Phosphate	Spectrophotometry - Discrete analyser	
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.	
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.	
2455	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.	
2490	Hexavalent Chromium in Soils		Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.	
2610	Loss on Ignition	loss on ignition (LOI)	Determination of the proportion by mass that is lost from a soil by ignition at 550°C.	
2620	LOI 440	LOI 440 Trommel Fines	Determination of the proportion by mass that is lost from a soil by ignition at 440°C.	
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.	
2690	EPH A/A Split	Aliphatics: >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35– C40 Aromatics: >C10–C12, >C12–C16, >C16– C21, >C21– C35, >C35– C40	Acetone/Heptane extraction / GCxGC FID detection	
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.	
2780	VPH A/A Split	Aliphatics: >C5-C6, >C6-C7,>C7-C8,>C8- C10 Aromatics: >C5-C7,>C7-C8,>C8-C10		
2800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS	
2920	Phenols in Soils by HPLC	IPRANCI MATRIMANCIS I IIMATRIMANCIS	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.	

Report Information

Key UKAS accredited Μ MCERTS and UKAS accredited Unaccredited This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Т This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated "less than" < "greater than" > SOP Standard operating procedure LOD Limit of detection

This report shall not be reproduced except in full, and only with the prior approval of the laboratory.

Any comments or interpretations are outside the scope of UKAS accreditation.

The Laboratory is not accredited for any sampling activities and reported results relate to the samples 'as received' at the laboratory.

Uncertainty of measurement for the determinands tested are available upon request .

None of the results in this report have been recovery corrected.

All results are expressed on a dry weight basis.

The following tests were analysed on samples 'as received' and the results subsequently corrected to a dry weight basis EPH, VPH, TPH, BTEX, VOCs, SVOCs, PCBs, Phenols.

For all other tests the samples were dried at ≤ 30°C prior to analysis.

All Asbestos testing is performed at the indicated laboratory .

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1.

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt.

All water samples will be retained for 14 days from the date of receipt.

Charges may apply to extended sample storage.

Water Sample Category Key for Accreditation

DW - Drinking Water

GW - Ground Water

LE - Land Leachate

Report Information

- NA Not Applicable
- PL Prepared Leachate
- PW Processed Water
- RE Recreational Water
- SA Saline Water
- SW Surface Water
- TE Treated Effluent
- TS Treated Sewage
- UL Unspecified Liquid

Clean Up Codes

- NC No Clean Up
- MC Mathematical Clean Up
- FC Florisil Clean Up

HWOL Acronym System

- HS Headspace analysis
- EH Extractable hydrocarbons i.e. everything extracted by the solvent
- CU Clean-up e.g. by Florisil, silica gel
- 1D GC Single coil gas chromatography
- Total Aliphatics & Aromatics
- AL Aliphatics only
- AR Aromatic only
- 2D GC-GC Double coil gas chromatography
- #1 EH_2D_Total but with humics mathematically subtracted
- #2 EH_2D_Total but with fatty acids mathematically subtracted
- + Operator to indicate cumulative e.g. EH+EH_Total or EH_CU+HS_Total

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

Appendix V

GFOLABS Limited **Bucknalls Lane** Garston Watford Hertfordshire **WD25 9XX**

Tel: +44(0) 1923 892 190 Fax: +44(0) 1923 892 191 email: admin@geolabs.co.uk web: www.geolabs.co.uk

Report No: GEO/41089/01

Page 1 of 1

18 September 2024

Date samples received

21/08/2024

GEO / 41089 Our ref

Mr M Kent

Your ref C4103

For the attention of

HSP Consulting Lawrence House

Eastwood

Nottingham NG16 3SB

6 Meadowbank Way

Date written instructions received 21/08/2024 Date testing commenced 22/08/2024 Date of sample disposal 16/10/2024

Project **COLEG SIR GAR**

Further to your instructions we have pleasure in enclosing the results of the tests you requested in the attached figures.

LABORATORY TEST REPORT

Item No	Test Quantity	Description
1	~	Liquid & Plastic Limits Summary
~	22	Water Content
~	20	Liquid & Plastic Limits
2	4	Particle Density
3	~	Geochemical Test Summary
~	13	BRE SD1 Suite D - Brownfield + pyrite
4	17	Particle Size Distribution
5	12	Water Content / Dry Density Relationship
6	12	California Bearing Ratio
7	36	Shear Strength by Hand Vane

Any opinions or interpretations expressed herein are outside the scope of UKAS accreditation. All results contained in this report are provisional unless signed by an approved signatory. The results contained in this report relate only to samples received in the laboratory and are tested 'as received' unless otherwise stated. This report should not be reproduced, except in full, without the written approval of the laboratory. The results reported are applicable only to the test items received by the laboratory.

All the necessary data required by the documented test procedures has been recorded and will be stored for a period of not less than 6 years. This data will be issued to yourselves at your request. All samples will be disposed of after the date shown above. Written confirmation will be required to retain the samples beyond this period and a storage charge may be applied.

We trust that the above meets your requirements and should you require any further information or assistance, please do not hesitate to contact us.

Yours faithfully

on behalf of GEOLABS Limited

BS EN ISO 17892-12: 2018+A2:2022

SUMMARY OF LIQUID AND PLASTIC LIMIT TESTS

Location	Depth m	Sample Ref	Sample Type	Description	Water Content & BS EN ISO 17892-1 : 2014 +A1:2022	% Liquid Limit	% Plastic Limit	% Plasticity Index	% Percentage Passing 425µm	Atterberg Classification	Test Type	Sample Condition
SA201	0.80-1.10		LB	Brown slightly sandy gravelly clayey SILT with rare cobbles and roots.	13.5	39	28	11	59	MI	2	3
SA202	0.50-0.90		LB	Yellowish brown sandy gravelly silty CLAY with rare rootlets and cobbles.	10.6	35	20	15	69	CL	2	3
SA203	0.70-1.00		LB	Dark grey slightly sandy slightly gravelly silty CLAY.	20.1	33	19	14	92	CL	2	1
SA204	0.60-1.00		LB	Grey mottled brown slightly sandy silty CLAY.	18.6	28	16	12	96	CL	2	3
SA205	0.40-0.60		LB	Dark brown sandy silty clayey GRAVEL with occasional cobbles and rare roots.	11.1	43	25	18	20	CI	2	3
SA206	0.40-0.70		LB	Light brown mottled grey fine sandy gravelly silty CLAY.	21.5	49	27	22	35	CI	2	3
SA206	0.90-1.20		LB	Dark grey clayey silty sandy GRAVEL with some cobbles and bitumen pieces.	8.9	39	22	17	21	CI	2	3
SA207	1.00		LB	Dark brown slightly sandy slightly clayey silty GRAVEL and COBBLES.	5.5	46	26	20	12	CI	2	3
TP104	1.00-1.50		LB	Dark brown sandy silty gravelly CLAY with rare cobbles.	12.4	44	23	21	44	CI	2	3
TP104	2.10-2.50		LB	Dark brown mottled yellow sandy gravelly silty CLAY.	15.3	34	20	14	30	CL	2	3
TP105	0.70-1.10		LB	Yellowish brown slightly sandy slightly gravelly silty CLAY.	20.2	44	25	19	88	CI	2	3
TP105	2.20-2.50		LB	Dark brown sandy silty gravelly CLAY with rare cobbles.	14.1	33	20	13	37	CL	2	3
TP106	0.70-1.00		LB	Dark brown mottled grey sandy gravelly silty CLAY.	15.6	49	23	26	67	CI	2	3
TP106	2.00-2.50		LB	Dark grey mottled brown gravelly slightly sandy silty CLAY.	11.8	43	23	20	51	CI	2	3
WS101	1.50-1.80		D	Brownish grey slightly gravelly sandy silty CLAY with rare roots.	15.6	24	15	9	99	CL	2	1
Test Type:	2 - 4 point 80	g / 30° fall	cone metho	d.	Sampl	e condition	n: 1 - <i>i</i>	As Receive	d			

- 2 Air Dried
- 3 Washed & Air Dried

Checked and Approved by:

S Burke - Senior Technician 18/09/2024

Project Number:

Project Name:

GEO / 41089

COLEG SIR GAR C4103

BS EN ISO 17892-12: 2018+A2:2022

SUMMARY OF LIQUID AND PLASTIC LIMIT TESTS

Location	Depth m	Sample Ref	Sample Type	Description	Water Content % BS EN ISO 17892-1 : 2014 +A1:2022	% Liquid Limit	% Plastic Limit	% Plasticity Index	% Percentage Passing 425µm	Atterberg Classification	Test Type	Sample Condition
WS102	2.40-2.70		D	Dark brown slightly clayey silty very sandy GRAVEL.	7.0	~	~	~	~	~	~	~
WS104	2.50-2.80		D	Dark brown slightly clayey silty sandy GRAVEL.	8.5	49	27	22	9	CI	2	3
WS105	1.00-1.50		D	Brownish grey slightly gravelly sandy silty CLAY.	14.3	31	21	10	76	CL	2	3
WS105	2.00-2.30		D	Brown slightly gravelly sandy silty CLAY.	18.2	26	18	8	88	CL	2	1
WS106	2.50-3.00		D	Dark grey sandy gravelly silty CLAY.	9.1	~	2	~	۲	~	7	~
WS107	1.00-1.50		D	Greyish brown slightly gravelly slightly sandy silty CLAY with rare roots.	25.5	42	25	17	98	CI	2	1
WS108	1.30-1.60		D	Brownish grey slightly gravelly slightly sandy silty CLAY with rare roots.	15.6	29	18	11	98	CL	2	1
Test Type:	2 - 4 point 80)g / 30° fall (cone metho	d.	Sampl	e conditio	n: 1 - <i>i</i>	As Receive	d			

- 2 Air Dried
- 3 Washed & Air Dried

Checked and Approved by:

S Burke - Senior Technician 18/09/2024

Project Number:

GEO / 41089

Project Name:

COLEG SIR GAR C4103

BS1377: Part 2:1990 / BS EN ISO 17892-3: 2015

PARTICLE DENSITY

Location	Depth (m)	Sample Ref	Sample Type	Description	Particle Density	Test Method
					Mg/m³	
TP104	1.00-1.50		LB	Dark brown sandy silty gravelly CLAY with rare cobbles.	2.72	2
TP104	2.10-2.50		LB	Dark brown mottled yellow sandy gravelly silty CLAY.	2.73	2
TP106	0.70-1.00		LB	Dark brown mottled grey sandy gravelly silty CLAY.	2.66	2
TP106	2.00-2.50		LB	Dark grey mottled brown gravelly slightly sandy silty CLAY.	2.73	2
Notes				Test Method 1. Gas jar : BS1377 : Part 2 : 19		

Checked and Approved by:

5 Burke

GL Version 00.991230-1128

S Burke - Senior Technician 17/09/2024 Project Number:

Project Name:

GEO / 41089

COLEG SIR GAR C4103 **GEOLABS**

2. Pycnometer: BS EN ISO 17892-3:2015 (UKAS Accredited)

1240 - Chemical Test Summary - 41089.XLSM

SUMMARY OF CHEMICAL TESTS ON SOIL

Location	Depth m	Sample Ref	Sample Type	pH Value	Total Acid Soluble Sulphate as SO4	water Soluble Sulphate as SO4 2:1 Water:Soil Extract	% Total Sulphur	© Water Soluble Chloride	© Water Soluble Nitrate	© ≤ Magnesium	% Organic Content	% Mass Loss on Ignition	% Carbonate Content
SA201	0.80-1.10		LB	7.8	0.031	< 0.010	0.010	< 0.010	< 0.010	< 0.010	-	-	-
SA202	0.50-0.90		LB	8.0	0.035	< 0.010	0.010	< 0.010	< 0.010	< 0.010	-	-	-
SA205	0.40-0.60		LB	6.9	0.039	< 0.010	0.020	< 0.010	< 0.010	< 0.010	-	-	-
SA206	0.90-1.20		LB	8.1	0.18	0.47	0.64	< 0.010	< 0.010	0.019	-	-	-
TP104	1.00-1.50		LB	7.7	0.012	< 0.010	0.010	< 0.010	< 0.010	< 0.010	-	-	-
TP104	2.10-2.50		LB	7.2	0.028	< 0.010	0.020	< 0.010	< 0.010	< 0.010	-	-	-
TP105	0.70-1.10		LB	7.2	< 0.010	< 0.010	0.010	< 0.010	< 0.010	< 0.010	-	-	-
TP105	2.20-2.50		LB	7.3	0.020	< 0.010	0.010	< 0.010	< 0.010	< 0.010	-	-	-
TP106	0.70-1.00		LB	7.1	0.10	0.21	0.040	0.014	< 0.010	0.018	-	-	-
TP106	2.00-2.50		LB	7.3	0.025	0.019	0.040	< 0.010	< 0.010	< 0.010	-	-	-
WS102	2.40-2.70		D	7.9	0.047	< 0.010	0.020	< 0.010	< 0.010	< 0.010	-	-	-
WS105	2.00-2.30		D	7.1	0.016	< 0.010	0.020	< 0.010	< 0.010	< 0.010	-	-	-
WS108	0.70-1.00		D	7.4	< 0.010	< 0.010	0.020	< 0.010	< 0.010	< 0.010	-	-	-

Tested by Eurofins Chemtest Ltd : MCERTS / UKAS No 2183

		•	•
	_	1	
	Ru	1	
9	P) 11	~#	<i>一</i>

Checked and Approved by: Project Number:

GEO / 41089

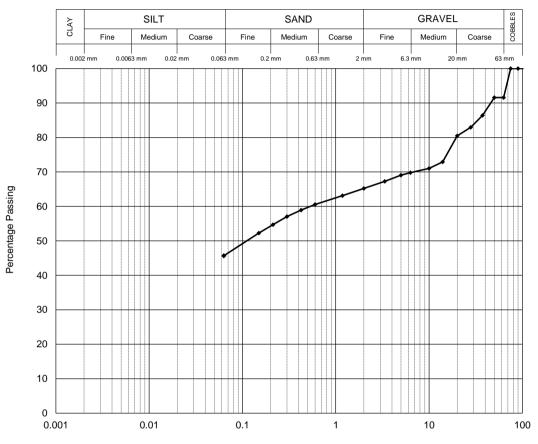
Project Name:

GEOLABS

S Burke - Senior Technician 17/09/2024 COLEG SIR GAR C4103

PARTICLE SIZE DISTRIBUTION

Location Sample Depth Sample Type


SA201 0.80-1.10 m LB

Description

Brown slightly sandy gravelly clayey SILT with rare cobbles and roots.

BS EN ISO 17892-4: 2016: Clause 5.2 - Wet Sieve

Siev	'e
Size	% Pass
200.0 mm	100
125.0 mm	100
90.0 mm	100
75.0 mm	100
63.0 mm	92
50.0 mm	92
37.5 mm	86
28.0 mm	83
20.0 mm	80
14.0 mm	73
10.0 mm	71
6.30 mm	70
5.00 mm	69
3.35 mm	67
2.00 mm	65
1.18 mm	63
600 µm	61
425 µm	59
300 µm	57
212 µm	55
150 µm	52
63 µm	46

Particle Size (mm)

Particle Proportions	
Cobbles	8.4
Gravel	26.4
Sand	19.5
Silt & Clay	45.7

Tested by MJ Checked and Approved by

Project Number:

Project Name:

GEO / 41089

COLEG SIR GAR C4103

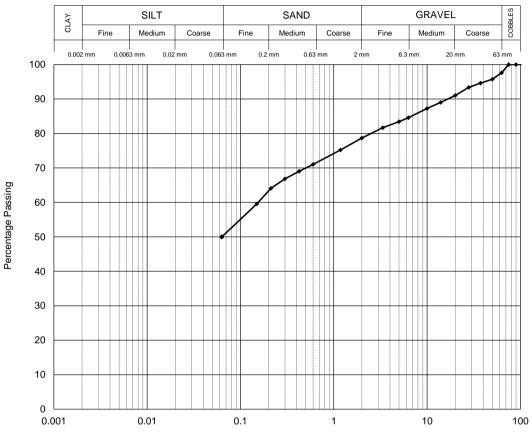
18/09/2024

Bucknalls Lane, Garston, Watford, Hertfordshire, WD25 9XX

Page 1 of 1 (Ref 1726644126)

PARTICLE SIZE DISTRIBUTION

Location Sample Depth Sample Type


SA202 0.50-0.90 m LB

Description

Yellowish brown sandy gravelly silty CLAY with rare rootlets and cobbles.

BS EN ISO 17892-4: 2016: Clause 5.2 - Wet Sieve

Sieve	
Size	% Pass
200.0 mm	100
125.0 mm	100
90.0 mm	100
75.0 mm	100
63.0 mm	98
50.0 mm	96
37.5 mm	95
28.0 mm	93
20.0 mm	91
14.0 mm	89
10.0 mm	87
6.30 mm	85
5.00 mm	83
3.35 mm	82
2.00 mm	79
1.18 mm	75
600 µm	71
425 µm	69
300 µm	67
212 µm	64
150 µm	60
63 µm	50

Particle Size (mm)

Particle Proportions	
Cobbles	2.4
Gravel	19.0
Sand	28.7
Silt & Clay	49.9

Tested by MJ Checked and Approved by

Project Number:

Project Name:

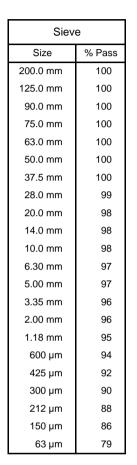
GEO / 41089

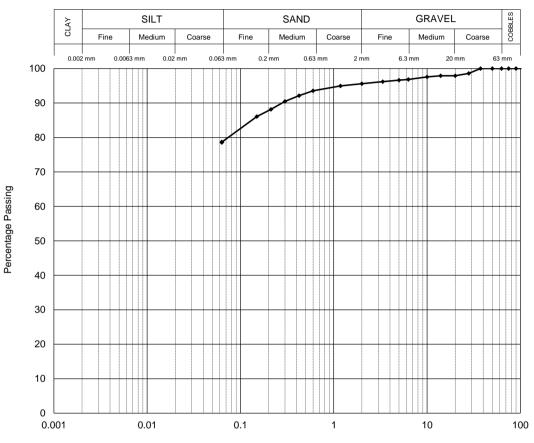
COLEG SIR GAR C4103

18/09/2024

Bucknalls Lane, Garston, Watford, Hertfordshire, WD25 9XX Client : HSP Consulting, Lawrence House, 6 Meadowbank Way, Eastwood, Nottingham, NG16 3SB

Page 1 of 1 (Ref 1726644134)


PARTICLE SIZE DISTRIBUTION


Location Sample Depth Sample Type

SA203 0.70-1.00 m Description

Dark grey slightly sandy slightly gravelly silty CLAY.

BS EN ISO 17892-4: 2016: Clause 5.2 - Wet Sieve

Particle Size (mm)

Particle Proportions	
Cobbles	0.0
Gravel	4.4
Sand	16.9
Silt & Clay	78.7

Tested by TH Checked and Approved by

S Burke - Senior Technician

Project Number:

Project Name:

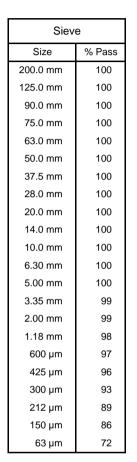
GEO / 41089

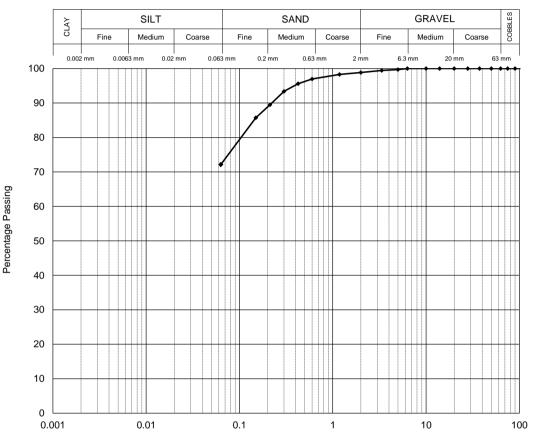
COLEG SIR GAR

18/09/2024

Bucknalls Lane, Garston, Watford, Hertfordshire, WD25 9XX

PARTICLE SIZE DISTRIBUTION


Location Sample Depth Sample Type


SA204 0.60-1.00 m

Description

Grey mottled brown slightly sandy silty CLAY.

BS EN ISO 17892-4: 2016: Clause 5.2 - Wet Sieve

Particle Size (mm)

Particle Proportions	
Cobbles	0.0
Gravel	1.2
Sand	26.7
Silt & Clay	72.1

Tested by TH Checked and Approved by

S Burke - Senior Technician 18/09/2024

Project Number:

Project Name:

GEO / 41089

COLEG SIR GAR

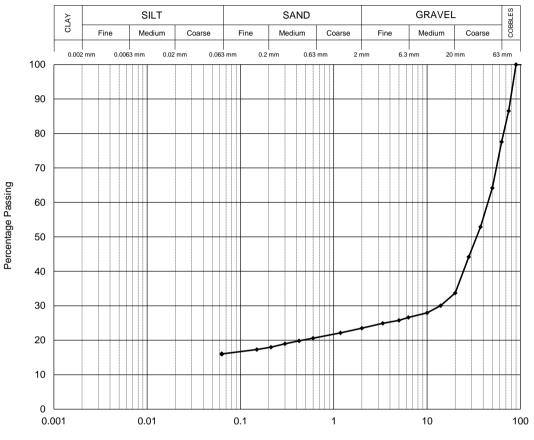
PARTICLE SIZE DISTRIBUTION

Location Sample Depth Sample Type

SA205 0.40-0.60 m LB

Description

Dark brown sandy silty clayey GRAVEL with occasional cobbles and rare


roots.

Insuffcient sample supplied to comply with BS EN ISO 17892-4: 2016 minimum Remarks

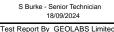
mass requirements

BS EN ISO 17892-4: 2016: Clause 5.2 - Wet Sieve

Sieve	
Size	% Pass
200.0 mm	100
125.0 mm	100
90.0 mm	100
75.0 mm	87
63.0 mm	78
50.0 mm	64
37.5 mm	53
28.0 mm	44
20.0 mm	34
14.0 mm	30
10.0 mm	28
6.30 mm	27
5.00 mm	26
3.35 mm	25
2.00 mm	24
1.18 mm	22
600 µm	21
425 µm	20
300 µm	19
212 µm	18
150 µm	17
63 µm	16

Particle Size (mm)

Particle Proportions	
Cobbles	22.4
Gravel	54.1
Sand	7.5
Silt & Clay	16.0


Tested by TH Checked and Approved by

Project Number:

Project Name:

GEO / 41089

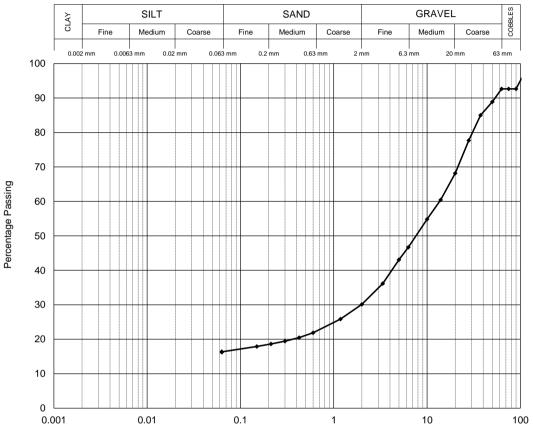
COLEG SIR GAR C4103

Bucknalls Lane, Garston, Watford, Hertfordshire, WD25 9XX

Page 1 of 1 (Ref 1726644156)

PARTICLE SIZE DISTRIBUTION

Location Sample Depth Sample Type


SA206 0.90-1.20 m LB

Description

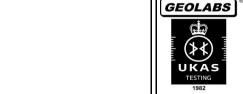
Dark grey clayey silty sandy GRAVEL with some cobbles and bitumen pieces.

BS EN ISO 17892-4: 2016: Clause 5.2 - Wet Sieve

Sieve	
Size	% Pass
200.0 mm	100
125.0 mm	100
90.0 mm	93
75.0 mm	93
63.0 mm	93
50.0 mm	89
37.5 mm	85
28.0 mm	78
20.0 mm	68
14.0 mm	60
10.0 mm	55
6.30 mm	47
5.00 mm	43
3.35 mm	36
2.00 mm	30
1.18 mm	26
600 µm	22
425 µm	20
300 µm	19
212 µm	19
150 µm	18
63 µm	16

Particle Size (mm)

Particle Proportions	
Cobbles	7.4
Gravel	62.5
Sand	13.8
Silt & Clay	16.3


Tested by MJ Checked and Approved by

Project Number:

Project Name:

COLEG SIR GAR C4103

GEO / 41089

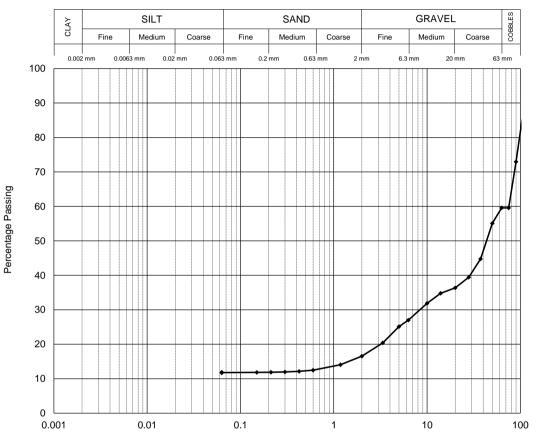
18/09/2024

GL Version 122.240221-1262

Bucknalls Lane, Garston, Watford, Hertfordshire, WD25 9XX

PARTICLE SIZE DISTRIBUTION

Location SA207 Sample Depth 1.00 m Sample Type LB


Description

Dark brown slightly sandy slightly clayey silty GRAVEL and COBBLES.

Insuffcient sample supplied to comply with BS EN ISO 17892-4: 2016 minimum mass requirements

BS EN ISO 17892-4: 2016: Clause 5.2 - Wet Sieve

Sieve	
Size	% Pass
200.0 mm	100
125.0 mm	100
90.0 mm	73
75.0 mm	60
63.0 mm	60
50.0 mm	55
37.5 mm	45
28.0 mm	39
20.0 mm	36
14.0 mm	35
10.0 mm	32
6.30 mm	27
5.00 mm	25
3.35 mm	20
2.00 mm	17
1.18 mm	14
600 µm	12
425 µm	12
300 µm	12
212 µm	12
150 µm	12
63 µm	12

Particle Size (mm)

Particle Proportions	
Cobbles	40.4
Gravel	43.0
Sand	4.8
Silt & Clay	11.8

Tested by TH Checked and Approved by

S Burke - Senior Technician 18/09/2024

Project Number:

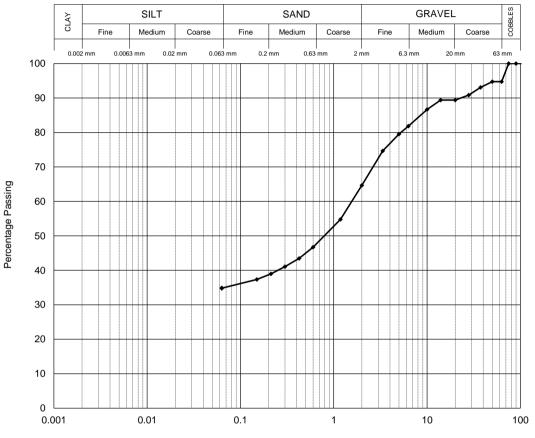
Project Name:

GEO / 41089

COLEG SIR GAR C4103

PARTICLE SIZE DISTRIBUTION

Location Sample Depth Sample Type


TP104 1.00-1.50 m

Description

Dark brown sandy silty gravelly CLAY with rare cobbles.

BS EN ISO 17892-4: 2016: Clause 5.2 - Wet Sieve

Sieve	
Size	% Pass
200.0 mm	100
125.0 mm	100
90.0 mm	100
75.0 mm	100
63.0 mm	95
50.0 mm	95
37.5 mm	93
28.0 mm	91
20.0 mm	89
14.0 mm	89
10.0 mm	87
6.30 mm	82
5.00 mm	80
3.35 mm	75
2.00 mm	65
1.18 mm	55
600 µm	47
425 µm	43
300 µm	41
212 µm	39
150 µm	37
63 µm	35

Particle Size (mm)

Particle Proportions	
Cobbles	5.2
Gravel	30.1
Sand	29.8
Silt & Clay	34.9

Tested by MJ Checked and Approved by

18/09/2024

Project Number:

Project Name:

GEO / 41089

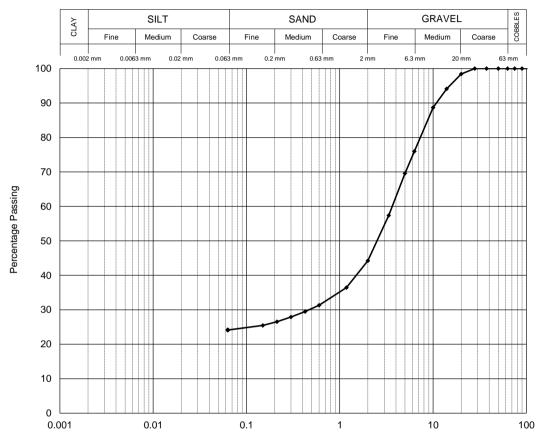
COLEG SIR GAR C4103

GEOLABS

GL Version 122.240221-1262

Client : HSP Consulting, Lawrence House, 6 Meadowbank Way, Eastwood, Nottingham, NG16 3SB

PARTICLE SIZE DISTRIBUTION


Location Sample Depth Sample Type

TP104 2.10-2.50 m Description

Dark brown mottled yellow sandy gravelly silty CLAY.

BS EN ISO 17892-4: 2016: Clause 5.2 - Wet Sieve

Sieve	
Size	% Pass
200.0 mm	100
125.0 mm	100
90.0 mm	100
75.0 mm	100
63.0 mm	100
50.0 mm	100
37.5 mm	100
28.0 mm	100
20.0 mm	98
14.0 mm	94
10.0 mm	89
6.30 mm	76
5.00 mm	70
3.35 mm	57
2.00 mm	44
1.18 mm	36
600 µm	31
425 µm	30
300 µm	28
212 µm	27
150 µm	25
63 µm	24

Particle Size (mm)

Particle Proportions	
Cobbles	0.0
Gravel	55.8
Sand	20.1
Silt & Clay	24.1

Tested by TH Checked and Approved by

Project Name:

Project Number:

GEO / 41089

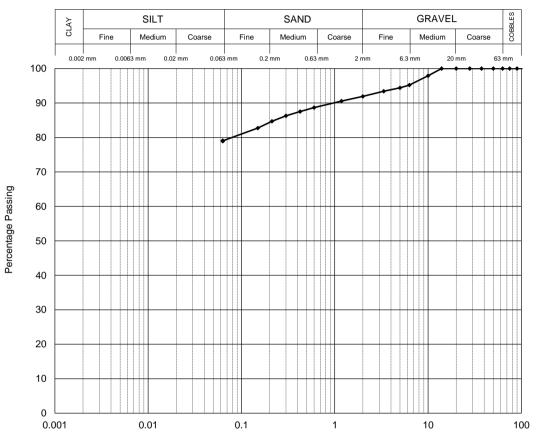
COLEG SIR GAR C4103

18/09/2024

Bucknalls Lane, Garston, Watford, Hertfordshire, WD25 9XX

Page 1 of 1 (Ref 1726644186)

Location Sample Depth Sample Type


TP105 0.70-1.10 m LB

Description

Yellowish brown slightly sandy slightly gravelly silty CLAY.

BS EN ISO 17892-4: 2016: Clause 5.2 - Wet Sieve

Sieve	
Size	% Pass
200.0 mm	100
125.0 mm	100
90.0 mm	100
75.0 mm	100
63.0 mm	100
50.0 mm	100
37.5 mm	100
28.0 mm	100
20.0 mm	100
14.0 mm	100
10.0 mm	98
6.30 mm	95
5.00 mm	94
3.35 mm	93
2.00 mm	92
1.18 mm	91
600 µm	89
425 µm	88
300 µm	86
212 µm	85
150 µm	83
63 µm	79

Particle Size (mm)

Particle Proportions	
Cobbles	0.0
Gravel	8.1
Sand	12.9
Silt & Clay	79.0

Tested by MJ Checked and Approved by

5 Burke

Project Number:

Project Name:

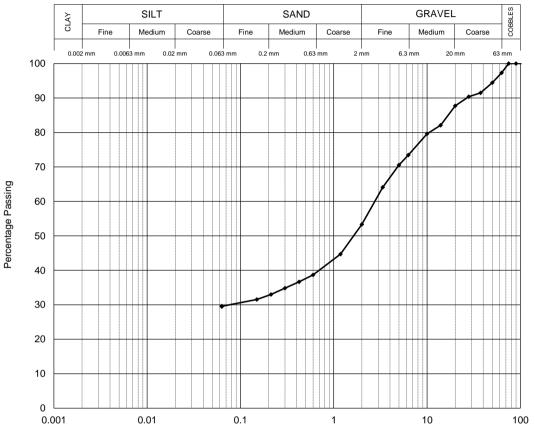
GEO / 41089

COLEG SIR GAR C4103

18/09/2024
Test Report By GEOLABS Limited

Page 1 of 1 (Ref 1726644193)

Location Sample Depth Sample Type


TP105 2.20-2.50 m

Description

Dark brown sandy silty gravelly CLAY with rare cobbles.

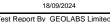
BS EN ISO 17892-4: 2016: Clause 5.2 - Wet Sieve

Sieve	
Size	% Pass
200.0 mm	100
125.0 mm	100
90.0 mm	100
75.0 mm	100
63.0 mm	97
50.0 mm	94
37.5 mm	91
28.0 mm	90
20.0 mm	88
14.0 mm	82
10.0 mm	80
6.30 mm	73
5.00 mm	71
3.35 mm	64
2.00 mm	53
1.18 mm	45
600 µm	39
425 µm	37
300 µm	35
212 µm	33
150 µm	32
63 µm	30

Particle Size (mm)

Particle Proportions	
Cobbles	2.7
Gravel	43.9
Sand	23.8
Silt & Clay	29.6

Tested by TH Checked and Approved by


GL Version 122.240221-1262

Project Number:

Project Name:

GEO / 41089

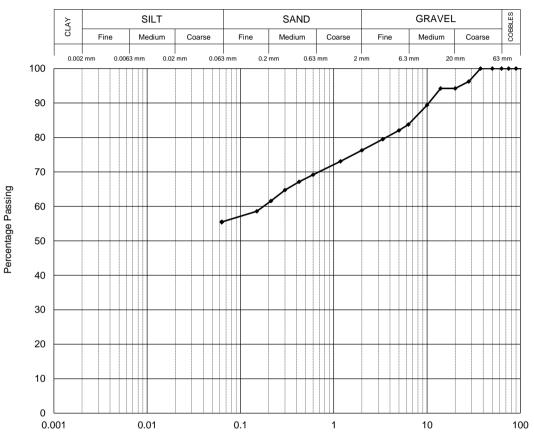
COLEG SIR GAR C4103

Bucknalls Lane, Garston, Watford, Hertfordshire, WD25 9XX Client : HSP Consulting, Lawrence House, 6 Meadowbank Way, Eastwood, Nottingham, NG16 3SB

Page 1 of 1 (Ref 1726644200)

PARTICLE SIZE DISTRIBUTION

Location Sample Depth Sample Type


TP106 0.70-1.00 m LB

Description

Dark brown mottled grey sandy gravelly silty CLAY.

BS EN ISO 17892-4: 2016: Clause 5.2 - Wet Sieve

Sieve	
Size	% Pass
200.0 mm	100
125.0 mm	100
90.0 mm	100
75.0 mm	100
63.0 mm	100
50.0 mm	100
37.5 mm	100
28.0 mm	96
20.0 mm	94
14.0 mm	94
10.0 mm	89
6.30 mm	84
5.00 mm	82
3.35 mm	80
2.00 mm	76
1.18 mm	73
600 µm	69
425 µm	67
300 µm	65
212 µm	62
150 µm	59
63 µm	55

Particle Size (mm)

Particle Proportions	
Cobbles	0.0
Gravel	23.7
Sand	20.8
Silt & Clay	55.5

Tested by MJ Checked and Approved by

Project Number:

Project Name:

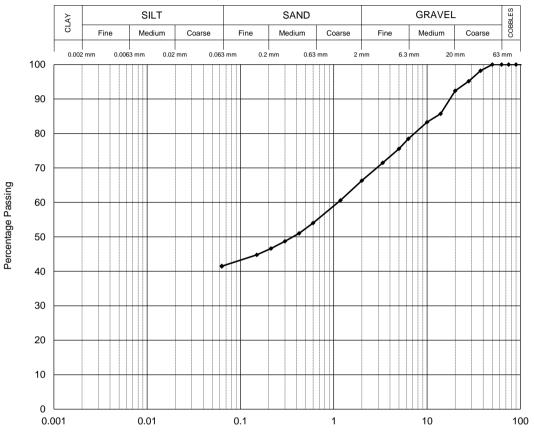
GEO / 41089

COLEG SIR GAR C4103

Bucknalls Lane, Garston, Watford, Hertfordshire, WD25 9XX

Page 1 of 1 (Ref 1726644208)

PARTICLE SIZE DISTRIBUTION


Location Sample Depth Sample Type TP106 2.00-2.50 m

Description

Dark grey mottled brown gravelly slightly sandy silty CLAY.

BS EN ISO 17892-4: 2016: Clause 5.2 - Wet Sieve

Sieve	
Size	% Pass
200.0 mm	100
125.0 mm	100
90.0 mm	100
75.0 mm	100
63.0 mm	100
50.0 mm	100
37.5 mm	98
28.0 mm	95
20.0 mm	92
14.0 mm	86
10.0 mm	83
6.30 mm	78
5.00 mm	76
3.35 mm	72
2.00 mm	66
1.18 mm	61
600 µm	54
425 µm	51
300 µm	49
212 µm	47
150 µm	45
63 µm	41

Particle Size (mm)

Particle Proportions	
Cobbles	0.0
Gravel	33.7
Sand	24.9
Silt & Clay	41.4

Tested by MJ Checked and Approved by

5 Burke

Project Number:

Project Name:

GEO / 41089

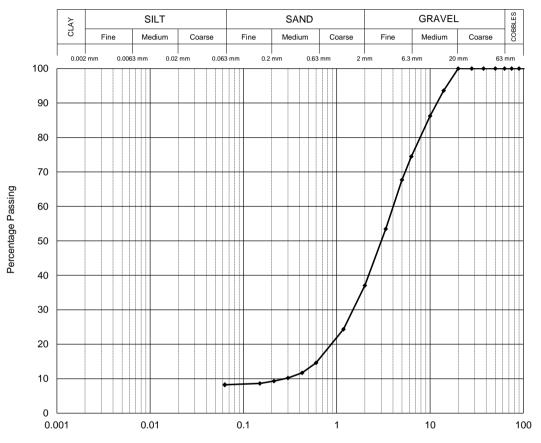
COLEG SIR GAR C4103

18/09/2024 est Report By GEOLABS Limited

Page 1 of 1 (Ref 1726644215)

PARTICLE SIZE DISTRIBUTION

Location Sample Depth Sample Type


WS102 2.40-2.70 m Description

Dark brown slightly clayey silty very sandy GRAVEL.

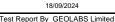
Insuffcient sample supplied to comply with BS EN ISO 17892-4: 2016 minimum mass requirements

BS EN ISO 17892-4: 2016: Clause 5.2 - Wet Sieve

Sieve	
Size	% Pass
200.0 mm	100
125.0 mm	100
90.0 mm	100
75.0 mm	100
63.0 mm	100
50.0 mm	100
37.5 mm	100
28.0 mm	100
20.0 mm	100
14.0 mm	94
10.0 mm	86
6.30 mm	74
5.00 mm	68
3.35 mm	53
2.00 mm	37
1.18 mm	24
600 µm	15
425 µm	12
300 µm	10
212 µm	9
150 µm	9
63 µm	8

Particle Size (mm)

Particle Proportions	
Cobbles	0.0
Gravel	62.9
Sand	28.8
Silt & Clay	8.3


Tested by MJ Checked and Approved by

S Burke - Senior Technician

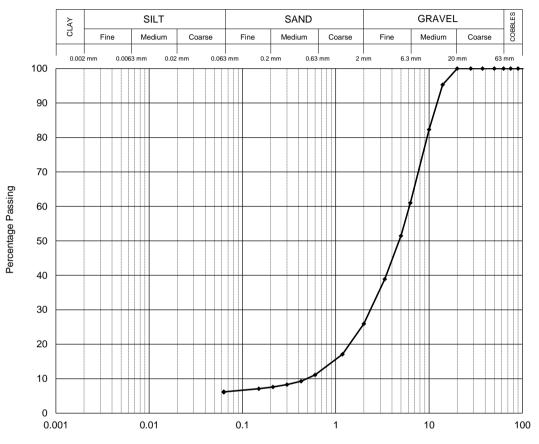
Project Number: Project Name:

GEO / 41089

COLEG SIR GAR C4103

Page 1 of 1 (Ref 1726644222)

PARTICLE SIZE DISTRIBUTION


Location Sample Depth Sample Type

WS104 2.50-2.80 m Description

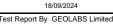
Dark brown slightly clayey silty sandy GRAVEL.

BS EN ISO 17892-4: 2016: Clause 5.2 - Wet Sieve

Sieve	
Size	% Pass
200.0 mm	100
125.0 mm	100
90.0 mm	100
75.0 mm	100
63.0 mm	100
50.0 mm	100
37.5 mm	100
28.0 mm	100
20.0 mm	100
14.0 mm	95
10.0 mm	82
6.30 mm	61
5.00 mm	51
3.35 mm	39
2.00 mm	26
1.18 mm	17
600 µm	11
425 µm	9
300 µm	8
212 µm	8
150 µm	7
63 µm	6

Particle Size (mm)

Particle Proportions	
Cobbles	0.0
Gravel	74.0
Sand	19.8
Silt & Clay	6.2


Tested by MJ Checked and Approved by

Project Number:

Project Name:

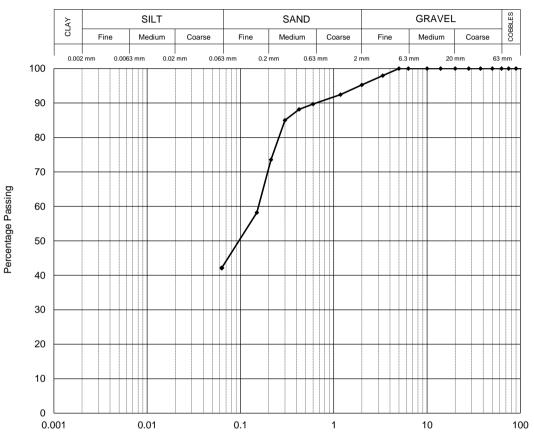
GEO / 41089

COLEG SIR GAR C4103

Bucknalls Lane, Garston, Watford, Hertfordshire, WD25 9XX

Page 1 of 1 (Ref 1726644230)

PARTICLE SIZE DISTRIBUTION


Location
Sample Depth
Sample Type

WS105 2.00-2.30 m Description

Brown slightly gravelly sandy silty CLAY.

BS EN ISO 17892-4: 2016: Clause 5.2 - Wet Sieve

Sieve	
Size	% Pass
200.0 mm	100
125.0 mm	100
90.0 mm	100
75.0 mm	100
63.0 mm	100
50.0 mm	100
37.5 mm	100
28.0 mm	100
20.0 mm	100
14.0 mm	100
10.0 mm	100
6.30 mm	100
5.00 mm	100
3.35 mm	98
2.00 mm	95
1.18 mm	92
600 µm	90
425 µm	88
300 µm	85
212 µm	74
150 µm	58
63 µm	42

Particle Size (mm)

Particle Proportions	
Cobbles	0.0
Gravel	4.8
Sand	53.1
Silt & Clay	42.1

Tested by MJ Checked and Approved by

5 Burke

Project Number:

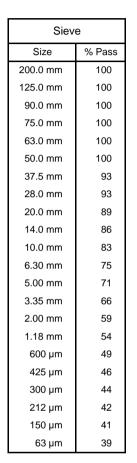
Project Name:

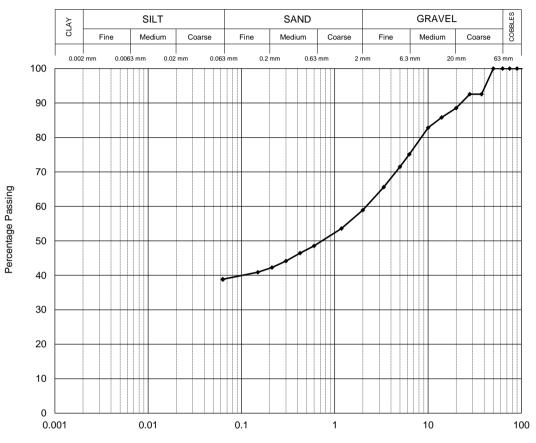
GEO / 41089

COLEG SIR GAR C4103

18/09/2024

Page 1 of 1 (Ref 1726644238)


PARTICLE SIZE DISTRIBUTION


Location Sample Depth Sample Type

WS106 2.50-3.00 m Description

Dark grey sandy gravelly silty CLAY.

BS EN ISO 17892-4: 2016: Clause 5.2 - Wet Sieve

Particle Size (mm)

Particle Proportions	
Cobbles	0.0
Gravel	41.1
Sand	20.1
Silt & Clay	38.8

Tested by TH Checked and Approved by

GL Version 122.240221-1262

S Burke - Senior Technician 18/09/2024

Project Number:

Project Name:

GEO / 41089

COLEG SIR GAR

Bucknalls Lane, Garston, Watford, Hertfordshire, WD25 9XX

Page 1 of 1

Particle Density - Assumed

WATER CONTENT / DRY DENSITY RELATIONSHIP

Location Sample Depth Sample Type

1410 - Comp SA201 00.80 LB Test 01 - 41089-634451.XLSM

SA201 0.80-1.10 m

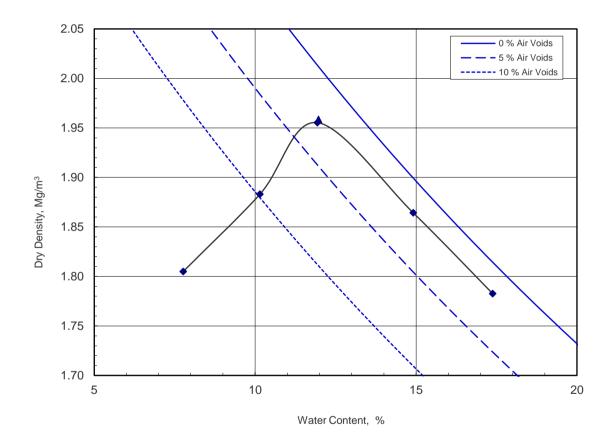
LB

Description:

Brown slightly sandy gravelly clayey SILT with rare cobbles and roots.

2.65

Zone X non - standard test


Preparation Oven dried

4.5 kg Rammer CBR mould for soils with Test Method some coarse gravel-size particles

Mg/m³

Samples Used Single Mass Retained on 37.5 mm Sieve % 14 6 Mass Retained on 20.0 mm Sieve % **Grading Zone** Χ

Maximum Dry Density Mg/m³ 1.96 **Optimum Water Content** % 12.0

Determination	1	2	3	4	5
Water Content 9	6 7.8	10.1	11.9	14.9	17.4
Dry Density Mg/m	¹³ 1.81	1.88	1.96	1.86	1.78

Tested by LH

S Burke - Senior Technician

Project Number:

GEO / 41089

Project Name:

COLEG SIR GAR C4103

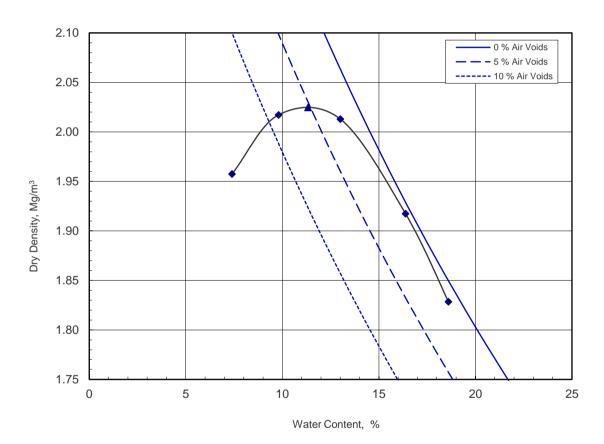
Version 58.240711-1410 GL

WATER CONTENT / DRY DENSITY RELATIONSHIP

Location Sample Depth Sample Type

SA202 0.50-0.90 m LB

Description:


Yellowish brown sandy gravelly silty CLAY with rare rootlets and cobbles.

Preparation	Oven dried

4.5 kg Rammer CBR mould for soils with Test Method some coarse gravel-size particles

Samples Used Single Mass Retained on 37.5 mm Sieve % 5 Mass Retained on 20.0 mm Sieve 4 % **Grading Zone** 5 Particle Density - Assumed 2.82 Mg/m³

Maximum Dry Density Mg/m³ 2.02 **Optimum Water Content** 11.3

Determination		1	2	3	4	5
Water Content	%	7.4	9.8	13.0	16.4	18.6
Dry Density	Mg/m³	1.96	2.02	2.01	1.92	1.83
Hand Vane	kPa	>150	>150	>150	106	74

Tested by LN

S Burke - Senior Technician

Project Number:

GEO / 41089

Project Name:

COLEG SIR GAR C4103

Version 58.240711-1410

GL

Page 1 of 1

BS 1377-2 : 2022 Clause 11.3

WATER CONTENT / DRY DENSITY RELATIONSHIP

Location Sample Depth Sample Type SA203 0.70-1.00 m

LB

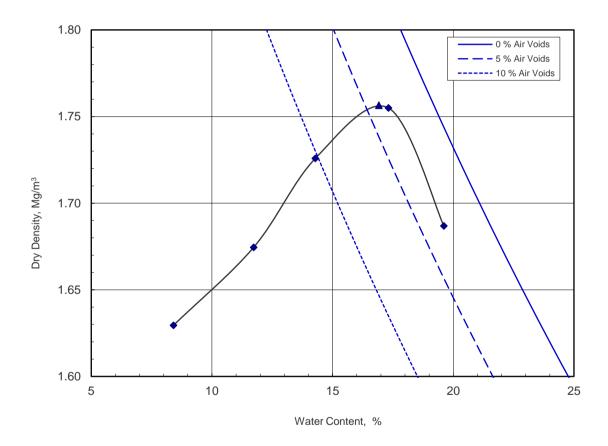
Description:

Dark grey slightly sandy slightly gravelly silty CLAY.

Preparation Oven dried

Test Method

Samples Used


Oven dried

2.5 kg Rammer 1L mould for soils with particles up to medium-gravel size

Single

Mass Retained on 37.5 mm Sieve%0Mass Retained on 20.0 mm Sieve%2Grading Zone2Particle Density - AssumedMg/m³2.65

Maximum Dry Density Mg/m³ 1.76
Optimum Water Content % 16.9

Determination		1	2	3	4	5
Water Content	%	8.4	11.7	14.3	17.3	19.6
Dry Density Mg/r	m³	1.63	1.67	1.73	1.75	1.69

Tested by LH Checked and Approved by

5 Burke Senior Technician

18/09/2024

Project Number:

GEO / 41089

Project Name:

COLEG SIR GAR C4103

GL Version 58.240711-1410

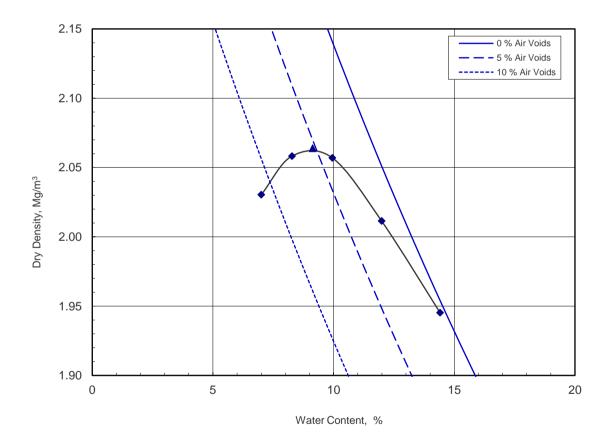
BS 1377-2: 2022 Clause 11.5

WATER CONTENT / DRY DENSITY RELATIONSHIP

Location Sample Depth Sample Type

SA204 0.60-1.00 m LB

Description:


Grey mottled brown slightly sandy silty CLAY.

HSV AT NMC- 38+36+38= 37.3

Preparation Oven dried 4.5 kg Rammer 1L mould for soils with Test Method particles up to medium-gravel size Samples Used Single

0 Mass Retained on 37.5 mm Sieve % 0 Mass Retained on 20.0 mm Sieve % **Grading Zone** 0 Particle Density - Assumed 2.72 Mg/m³

Maximum Dry Density Mg/m³ 2.06 **Optimum Water Content** 9.1

Determination		1	2	3	4	5
Water Content	%	7.0	8.3	9.9	12.0	14.4
Dry Density	Mg/m³	2.03	2.06	2.06	2.01	1.95

Tested by LN

S Burke - Senior Technician

Project Number:

GEO / 41089

Project Name:

WATER CONTENT / DRY DENSITY RELATIONSHIP

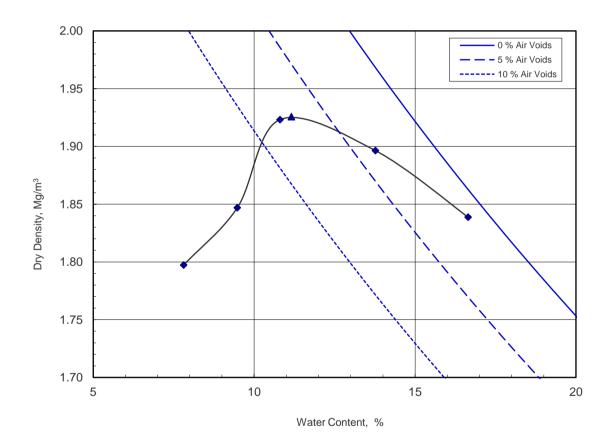
Location Sample Depth Sample Type

1410 - Comp SA205 00.40 LB Test 01 - 41089-634454.XLSM

SA205 0.40-0.60 m LB

Description:

Dark brown sandy silty clayey GRAVEL with occasional cobbles and rare roots.


Non Standard test zone x

Preparation Oven dried

4.5 kg Rammer CBR mould for soils with Test Method some coarse gravel-size particles

Samples Used Single Mass Retained on 37.5 mm Sieve % 47 Mass Retained on 20.0 mm Sieve 19 % **Grading Zone** Χ Particle Density - Assumed 2.70 Mg/m³

Maximum Dry Density Mg/m³ 1.93 **Optimum Water Content** 11.2

Determination		1	2	3	4	5
Water Content	%	7.8	9.5	10.8	13.8	16.6
Dry Density Mg/r	m³	1.80	1.85	1.92	1.90	1.84

Tested by LN

S Burke - Senior Technician

Project Number:

GEO / 41089

Project Name:

COLEG SIR GAR C4103

Version 58.240711-1410 GL

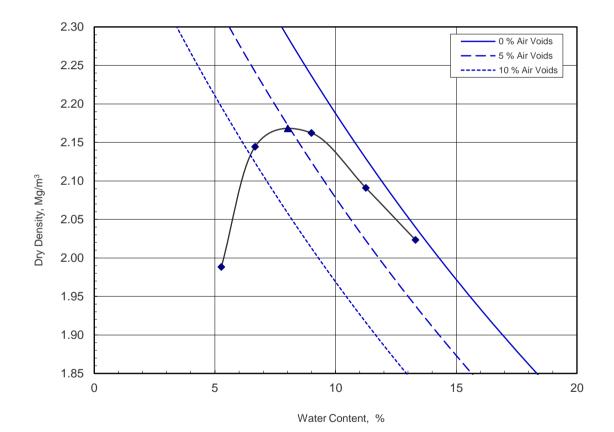
BS 1377-2: 2022 Clause 11.4

WATER CONTENT / DRY DENSITY RELATIONSHIP

Location Sample Depth Sample Type

SA206 0.90-1.20 m LB

Description:


Dark grey sandy silty clayey GRAVEL with bitumen pieces.

Non Standard zone X

Preparation Oven dried 2.5 kg Rammer CBR mould for soils with Test Method some coarse gravel-size particles Samples Used

Single Mass Retained on 37.5 mm Sieve % 15 17 Mass Retained on 20.0 mm Sieve % Grading Zone Χ Particle Density - Assumed 2.80 Mg/m³

Maximum Dry Density Mg/m³ 2.17 **Optimum Water Content** 8.0

Determination		1	2	3	4	5
Water Content	%	5.3	6.7	9.0	11.3	13.3
Dry Density	Mg/m³	1.99	2.14	2.16	2.09	2.02
Hand Vane	kPa	>150	>150	53.3	24	10.7

Tested by LH

S Burke - Senior Technician

Project Number:

GEO / 41089

Project Name:

COLEG SIR GAR C4103

Version 58.240711-1410

GL

18/09/2024 Test Report By GEOLABS Limited

Page 1 of 1 (Ref 1726644286)

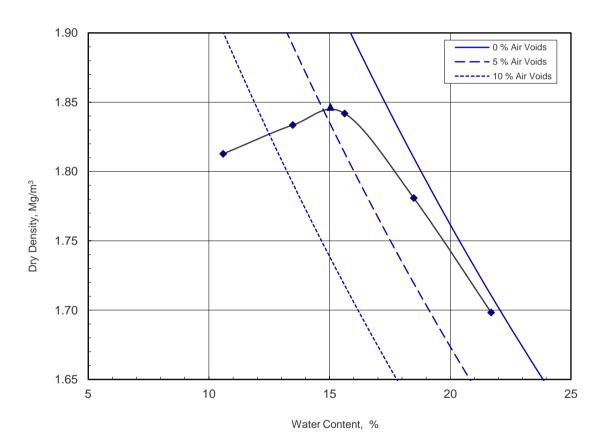
WATER CONTENT / DRY DENSITY RELATIONSHIP

Location TP104
Sample Depth 1.00-1.50 m
Sample Type LB

Description:

Dark brown sandy silty gravelly CLAY with rare cobbles.

Preparation Oven dried


Test Method

2.5 kg Rammer CBR mould for soils with some coarse gravel-size particles

Samples Used

Single

Maximum Dry Density Mg/m³ 1.85
Optimum Water Content % 15.0

Determination		1	2	3	4	5
Water Content	%	10.6	13.5	15.6	18.5	21.7
Dry Density	Mg/m³	1.81	1.83	1.84	1.78	1.70
Hand Vane	kPa	>150	120.6	48.3	17.6	6.6

Tested by LH Checked and Approved by

5 Burke Senior Technician

Project Number:

GEO / 41089

Project Name:

COLEG SIR GAR C4103

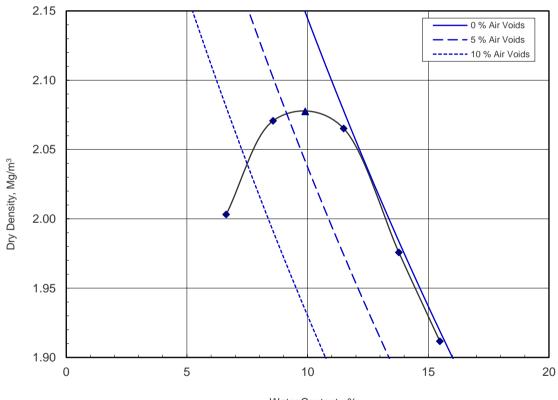
GL Version 58.240711-1410

Page 1 of 1

BS 1377-2: 2022 Clause 11.5

WATER CONTENT / DRY DENSITY RELATIONSHIP

Location TP104 Sample Depth 2.10-2.50 m Sample Type LB


Description:

Dark brown mottled yellow sandy gravelly silty CLAY.

Preparation Oven dried 4.5 kg Rammer 1L mould for soils with Test Method particles up to medium-gravel size

Samples Used Single 0 Mass Retained on 37.5 mm Sieve % 2 Mass Retained on 20.0 mm Sieve % **Grading Zone** 2 Particle Density - Measured 2.73 Mg/m³

Maximum Dry Density Mg/m³ 2.08 **Optimum Water Content** 9.9

Water Content,	%

Determination		1	2	3	4	5
Water Content	%	6.6	8.6	11.5	13.8	15.5
Dry Density	Mg/m³	2.00	2.07	2.07	1.98	1.91
Hand Vane	kPa	>150	>150	140.3	99.3	43.3

Tested by LN

S Burke - Senior Technician

Project Number:

GEO / 41089

Project Name:

COLEG SIR GAR C4103

Version 58.240711-1410 GL

BS 1377-2 : 2022 Clause 11.3

WATER CONTENT / DRY DENSITY RELATIONSHIP

Location Sample Depth Sample Type TP105 0.70-1.10 m LB Description:

Yellowish brown slightly sandy slightly gravelly silty CLAY.

Preparation Oven dried

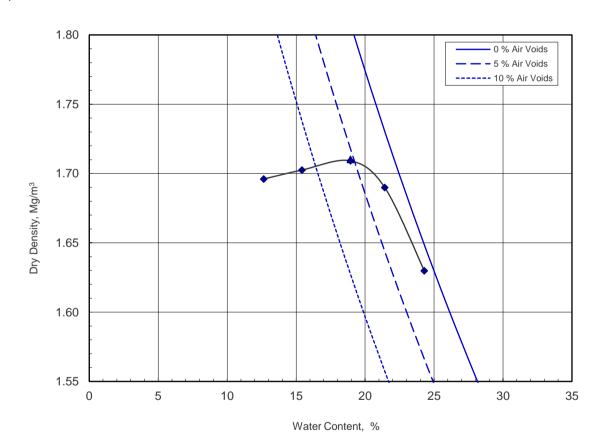
Test Method

2.5 kg Rammer 1L mould for soils with particles up to medium-gravel size

Samples Used

Mass Retained on 37.5 mm Sieve

%


 Mass Retained on 37.5 mm Sieve
 %
 0

 Mass Retained on 20.0 mm Sieve
 %
 0

 Grading Zone
 1

 Particle Density - Assumed
 Mg/m³
 2.75

Maximum Dry Density Mg/m³ 1.71
Optimum Water Content % 18.9

Determination	1	2	3	4	5
Water Content %	12.6	15.4	18.9	21.4	24.3
Dry Density Mg/m³	1.70	1.70	1.71	1.69	1.63

Tested by AK Checked and Approved by

Version 58.240711-1410

GL

5 Burke Senior Technician

Project Number:

GEO / 41089

Project Name:

COLEG SIR GAR C4103

18/09/2024

C4103 dshire, WD25 9XX BS 1377-2: 2022 Clause 11.6

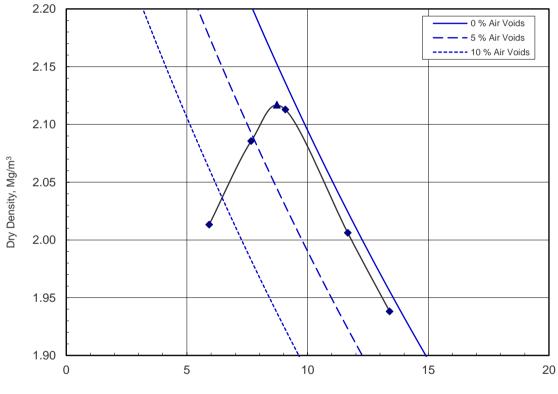
WATER CONTENT / DRY DENSITY RELATIONSHIP

Location Sample Depth Sample Type

TP105 2.20-2.50 m

LB

Description:


Dark brown sandy silty gravelly CLAY with rare cobbles.

HSV AT NMC = 78+90+106=91.3

Preparation Oven dried 4.5 kg Rammer CBR mould for soils with Test Method some coarse gravel-size particles

Samples Used Single 9 Mass Retained on 37.5 mm Sieve % Mass Retained on 20.0 mm Sieve 4 % **Grading Zone** 5 Particle Density - Assumed 2.65 Mg/m³

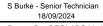
Maximum Dry Density Mg/m³ 2.12 **Optimum Water Content** 8.7

Water Content,	%

Determination		1	2	3	4	5
Water Content 9	%	5.9	7.7	9.1	11.7	13.4
Dry Density Mg/m	1 ³	2.01	2.09	2.11	2.01	1.94

Tested by LN

Version 58.240711-1410


GL

Project Number:

GEO / 41089

Project Name:

COLEG SIR GAR

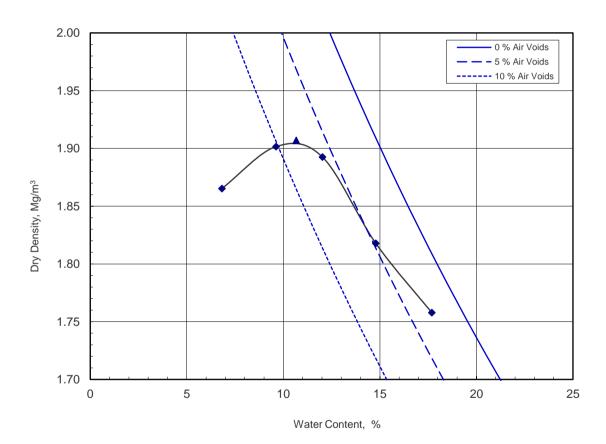
C4103

WATER CONTENT / DRY DENSITY RELATIONSHIP

Location Sample Depth Sample Type

TP106 0.70-1.00 m LB

Description:


Dark brown mottled grey sandy gravelly silty CLAY.

Preparation Oven dried

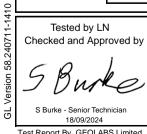
4.5 kg Rammer CBR mould for soils with Test Method some coarse gravel-size particles

Samples Used Single Mass Retained on 37.5 mm Sieve 0 % 6 Mass Retained on 20.0 mm Sieve % **Grading Zone** 3 Particle Density - Measured 2.66 Mg/m³

Maximum Dry Density Mg/m³ 1.91 **Optimum Water Content** 10.7

Determination		1	2	3	4	5
Water Content	%	6.8	9.6	12.0	14.8	17.7
Dry Density	Mg/m³	1.87	1.90	1.89	1.82	1.76
Hand Vane	kPa	>150	>150	>150	>150	84

Tested by LN


Project Number:

GEO / 41089

Project Name:

COLEG SIR GAR C4103

GEOLABS

Page 1 of 1

BS 1377-2: 2022 Clause 11.4

WATER CONTENT / DRY DENSITY RELATIONSHIP

LocationTP106Sample Depth2.00-2.50 mSample TypeLB

Description:

Dark grey mottled brown gravelly slightly sandy silty CLAY.

Preparation Oven dried

2.5 kg Rammer CBR mould for soils with

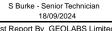
Test Method 2.5 kg Rammer CBR modified is soils will some coarse gravel-size particles

Maximum Dry Density Mg/m³ 2.02
Optimum Water Content % 8.9

Determination		1	2	3	4	5
Water Content	%	2.0	4.6	8.2	11.1	15.0
Dry Density	Mg/m³	1.90	1.98	2.02	1.99	1.87
Hand Vane	kPa	>150	>150	>150	142.6	46.6

Tested by AK Checked and Approved by

Version 58.240711-1410


GL

SB. do

Project Number:

GEO / 41089

Project Name:

CALIFORNIA BEARING RATIO

Location SA201 Sample Depth 0.80-1.10 m Sample Type LB Description:

Brown slightly sandy gravelly clayey SILT with rare cobbles and

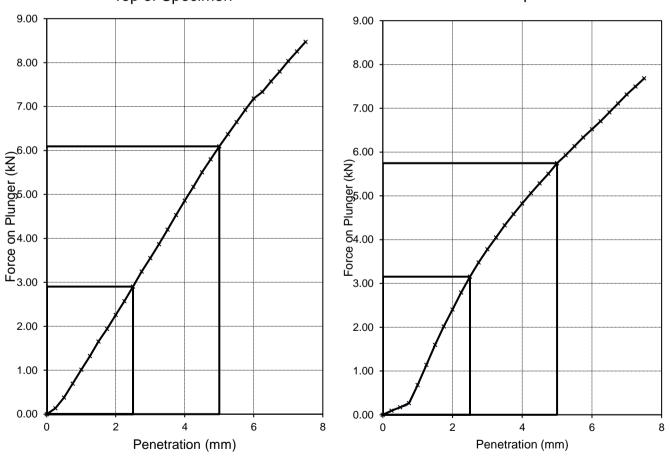
PREPARATION DETAILS

The specimen was tested in an unsoaked condition.

The specimen was tested at optimum water content

The specimen was prepared by dynamic compaction using a 4.5 kg rammer

Prepared bulk density 2.17 Mg/m³


Prepared dry density 1.91 Mg/m³

19.5 % of the sample was retained on a 20mm sieve

Test Details	Тор	Base
Surcharge	0.0 kg	0.0 kg
Seating load	50 N	50 N
Water content	13 %	14 %
CBR Value	30 %	29 %

Base of Specimen

Tested by AK
Checked and Approved by

S Burke - Senior Technician

Project Number:

Project Name:

GEO / 41089

CALIFORNIA BEARING RATIO

Location SA202 Sample Depth 0.50-0.90 m Sample Type LB Description:

Yellowish brown sandy gravelly silty CLAY with rare rootlets and cobbles

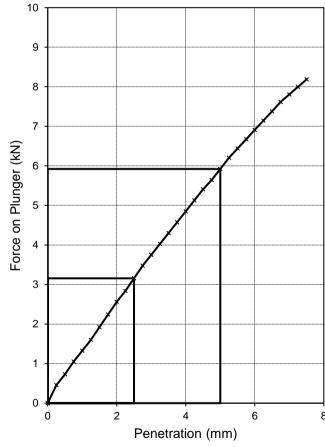
PREPARATION DETAILS

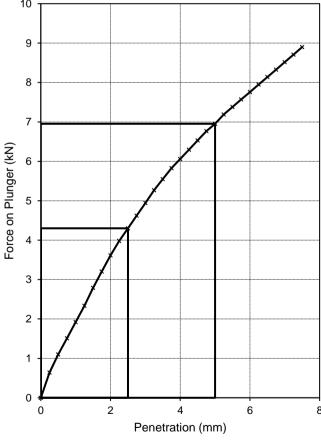
The specimen was tested in an unsoaked condition.

The specimen was tested at optimum water content

The specimen was prepared by dynamic compaction using a 4.5 kg rammer

Prepared bulk density 2.22 Mg/m³


Prepared dry density 1.97 Mg/m³


9.0 % of the sample was retained on a 20mm sieve

Test Details	Тор	Base
Surcharge	0.0 kg	0.0 kg
Seating load	250 N	250 N
Water content	13 %	13 %
CBR Value	30 %	35 %

Top of Specimen

Base of Specimen

Tested by AK
Checked and Approved by

S Burke - Senior Technician

Project Name:

GEO / 41089

COLEG SIR GAR C4103 UKAS
TESTING
1982

Project Number:

CALIFORNIA BEARING RATIO

SA203 Location Sample Depth 0.70-1.00 m

Sample Type LB Description:

Dark grey slightly sandy slightly gravelly silty CLAY.

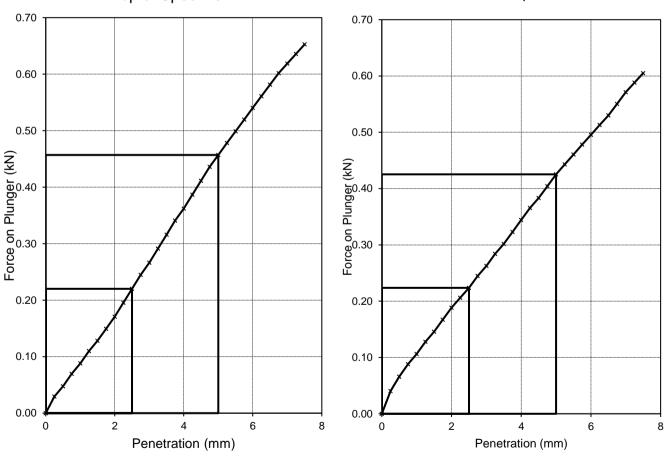
PREPARATION DETAILS

The specimen was tested in an unsoaked condition.

The specimen was tested at optimum water content

The specimen was prepared by dynamic compaction using a 2.5 kg rammer

Prepared bulk density 2.04 Mg/m³


Prepared dry density 1.74 Mg/m³

2.1 % of the sample was retained on a 20mm sieve

Test Details	Тор	Base
Surcharge	0.0 kg	0.0 kg
Seating load	10 N	10 N
Water content	17 %	17 %
CBR Value	2.3 %	2.1 %

Base of Specimen

Tested by AK Checked and Approved by

> S Burke - Senior Technician 18/09/2024

Project Number:

Project Name:

GEO / 41089

CALIFORNIA BEARING RATIO

Location SA204 Sample Depth 0.60-1.00 m Sample Type

LB

Description:

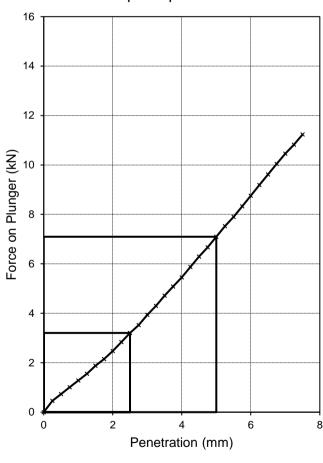
Grey mottled brown slightly sandy silty CLAY.

PREPARATION DETAILS

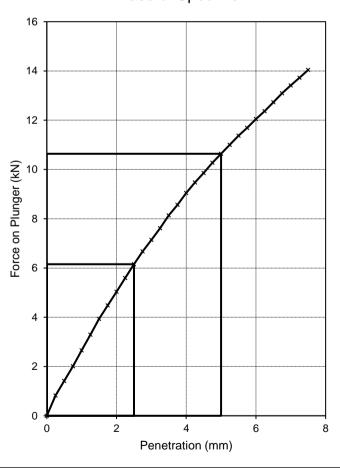
The specimen was tested in an unsoaked condition.

The specimen was tested at optimum water content

The specimen was prepared by dynamic compaction using a 4.5 kg rammer


Prepared bulk density 2.26 Mg/m³

Prepared dry density 2.07 Mg/m³


0.0 % of the sample was retained on a 20mm sieve

Test Details	Тор	Base
Surcharge	0.0 kg	0.0 kg
Seating load	250 N	250 N
Water content	8.8 %	9.1 %
CBR Value	35 %	53 %

Top of Specimen

Base of Specimen

Tested by AK Checked and Approved by

> S Burke - Senior Technician 18/09/2024

Project Number:

Project Name:

GEO / 41089

COLEG SIR GAR

C4103

CALIFORNIA BEARING RATIO

Location SA205 Sample Depth 0.40-0.60 m Sample Type LB Description:

Dark brown sandy silty clayey GRAVEL with occasional cobbles and rare roots.

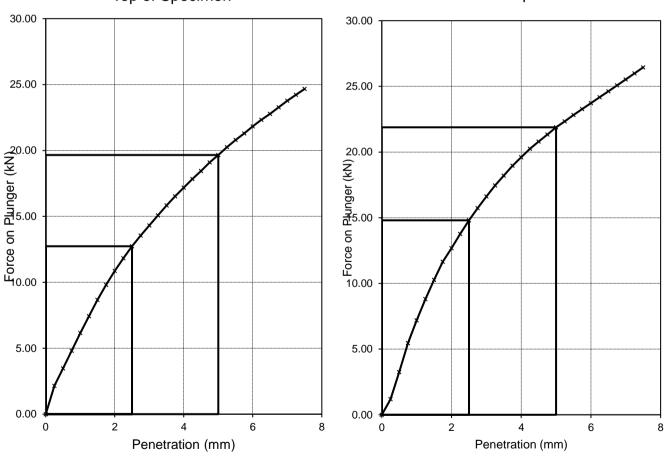
PREPARATION DETAILS

The specimen was tested in an unsoaked condition.

The specimen was tested at optimum water content

The specimen was prepared by dynamic compaction using a 4.5 kg rammer

Prepared bulk density 2.16 Mg/m³


Prepared dry density 1.92 Mg/m³

66.3 % of the sample was retained on a 20mm sieve

Test Details	Тор	Base
Surcharge	0.0 kg	0.0 kg
Seating load	250 N	250 N
Water content	12 %	13 %
CBR Value	98 %	112 %

Base of Specimen

Tested by AK
Checked and Approved by

5 D WHO
S Burke - Senior Technician

Project Number:

GEO / 41089

Project Name:

CALIFORNIA BEARING RATIO

SA206 Location Sample Depth 0.90-1.20 m Sample Type LB

Description:

Dark grey clayey silty sandy GRAVEL with some cobbles and bitumen pieces.

PREPARATION DETAILS

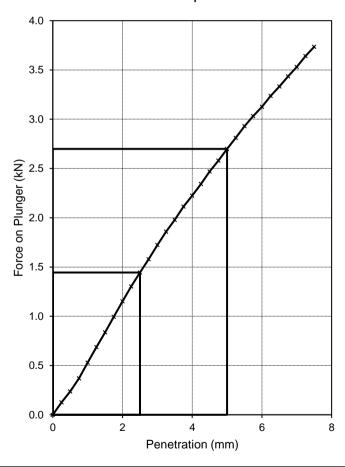
The specimen was tested in an unsoaked condition.

The specimen was tested at optimum water content

The specimen was prepared by dynamic compaction using a 2.5 kg rammer

Prepared bulk density 2.32 Mg/m³

Prepared dry density 2.11 Mg/m³


31.8 % of the sample was retained on a 20mm sieve

Test Details	Тор	Base
Surcharge	0.0 kg	0.0 kg
Seating load	50 N	50 N
Water content	9.4 %	10 %
CBR Value	11 %	13 %

Top of Specimen

4.0 3.5 3.0 Force on Plunger (kN) 2.5 2.0 1.5 1.0 0.5 0.0 2 Penetration (mm)

Base of Specimen

Tested by AK Checked and Approved by

S Burke - Senior Technician

Project Number:

Project Name:

GEO / 41089

COLEG SIR GAR

C4103

CALIFORNIA BEARING RATIO

TP104 Location Sample Depth 1.00-1.50 m Sample Type

LB

Description:

Dark brown sandy silty gravelly CLAY with rare cobbles.

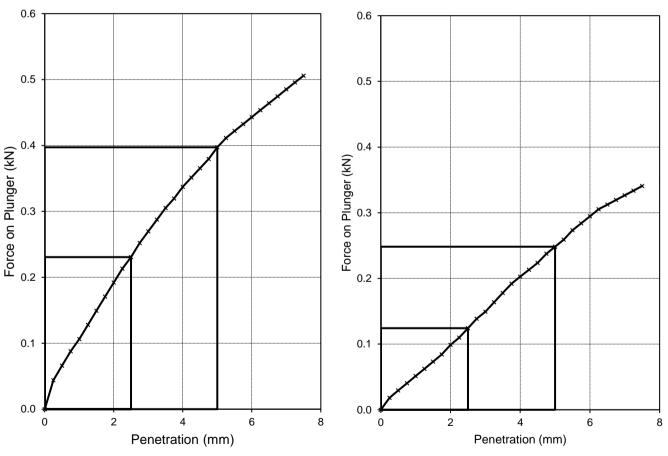
PREPARATION DETAILS

The specimen was tested in an unsoaked condition.

The specimen was tested at optimum water content

The specimen was prepared by dynamic compaction using a 2.5 kg rammer

Prepared bulk density 2.13 Mg/m³


Prepared dry density 1.85 Mg/m³

10.6 % of the sample was retained on a 20mm sieve

Test Details	Тор	Base
Surcharge	0.0 kg	0.0 kg
Seating load	10 N	10 N
Water content	15 %	16 %
CBR Value	2.0 %	1.2 %

Top of Specimen

Base of Specimen

Tested by AK Checked and Approved by

S Burke - Senior Technician

Project Number:

Project Name:

GEO / 41089

CALIFORNIA BEARING RATIO

Location TP104 Sample Depth 2.10-2.50 m

Sample Type LB Description:

Dark brown mottled yellow sandy gravelly silty CLAY.

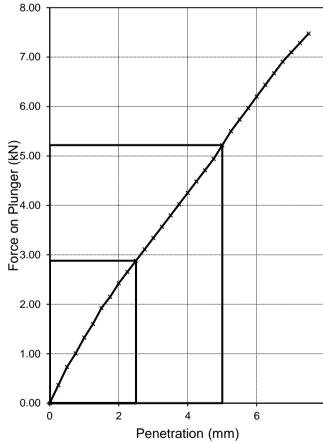
PREPARATION DETAILS

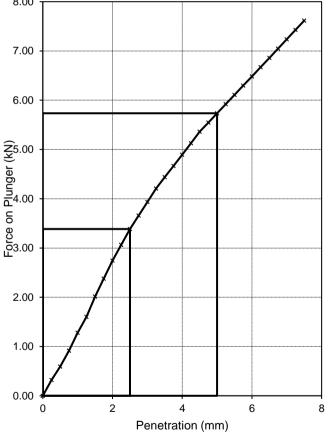
The specimen was tested in an unsoaked condition.

The specimen was tested at optimum water content

The specimen was prepared by dynamic compaction using a 4.5 kg rammer

Prepared bulk density 2.30 Mg/m³


Prepared dry density 2.09 Mg/m³


1.6 % of the sample was retained on a 20mm sieve

Test Details	Тор	Base
Surcharge	0.0 kg	0.0 kg
Seating load	50 N	50 N
Water content	10.0 %	10 %
CBR Value	26 %	29 %

Base of Specimen 8.00

Tested by AK Checked and Approved by

S Burke - Senior Technician

18/09/2024

Project Number:

GEO / 41089

Project Name:

CALIFORNIA BEARING RATIO

Location TP105 Sample Depth 0.70-1.10 m Sample Type

LB

Description:

Yellowish brown slightly sandy slightly gravelly silty CLAY.

PREPARATION DETAILS

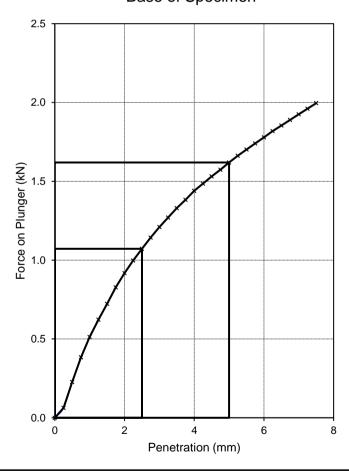
The specimen was tested in an unsoaked condition.

The specimen was tested at optimum water content

The specimen was prepared by dynamic compaction using a 2.5 kg rammer

Prepared bulk density 2.04 Mg/m³

Prepared dry density 1.70 Mg/m³


0.0 % of the sample was retained on a 20mm sieve

Test Details	Тор	Base
Surcharge	0.0 kg	0.0 kg
Seating load	50 N	50 N
Water content	20 %	20 %
CBR Value	7.7 %	8.1 %

Top of Specimen

2.5 2.0 Force on Plunger (kN) 1.5 0.5 2 Penetration (mm)

Base of Specimen

Tested by AK Checked and Approved by

> S Burke - Senior Technician 18/09/2024

Project Number:

Project Name:

GEO / 41089

COLEG SIR GAR

C4103

CALIFORNIA BEARING RATIO

Location TP105 Sample Depth 2.20-2.50 m

Sample Type LB

Description:

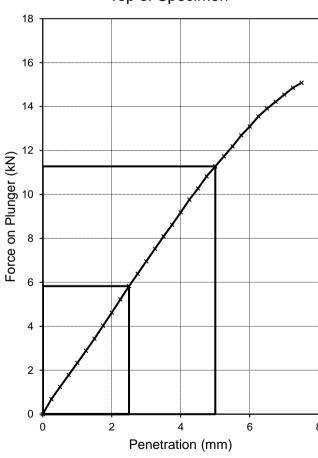
Dark brown sandy silty gravelly CLAY with rare cobbles.

PREPARATION DETAILS

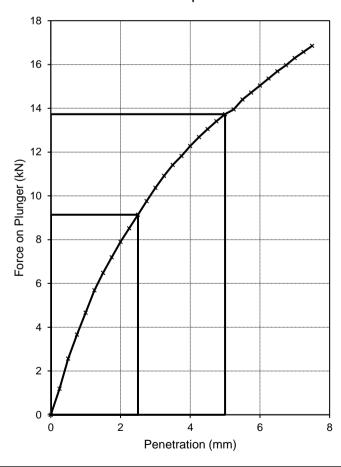
The specimen was tested in an unsoaked condition.

The specimen was tested at optimum water content

The specimen was prepared by dynamic compaction using a 4.5 kg rammer


Prepared bulk density 2.30 Mg/m³

Prepared dry density 2.10 Mg/m³


12.3 % of the sample was retained on a 20mm sieve

Test Details	Тор	Base
Surcharge	0.0 kg	0.0 kg
Seating load	250 N	250 N
Water content	10 %	9.8 %
CBR Value	56 %	69 %

Top of Specimen

Base of Specimen

Tested by AK
Checked and Approved by

S Burke - Senior Technician 18/09/2024 Project Number:

Project Name:

GEO / 41089

CALIFORNIA BEARING RATIO

Location TP106 Sample Depth 0.70-1.00 m

Sample Type LB

Description:

Dark brown mottled grey sandy gravelly silty CLAY.

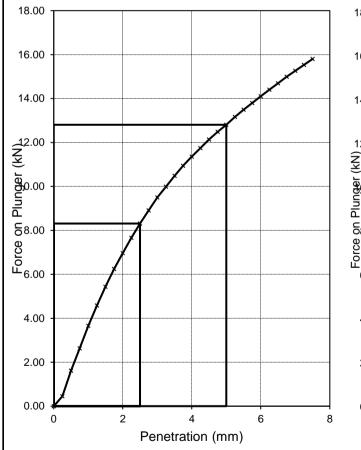
PREPARATION DETAILS

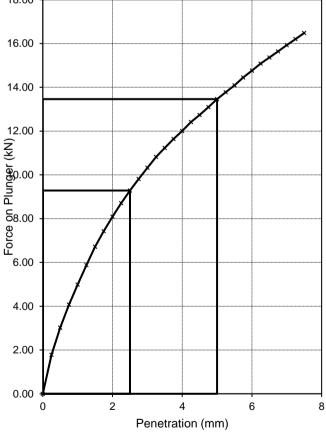
The specimen was tested in an unsoaked condition.

The specimen was tested at optimum water content

The specimen was prepared by dynamic compaction using a 4.5 kg rammer

Prepared bulk density 2.13 Mg/m³


Prepared dry density 1.89 Mg/m³


5.8 % of the sample was retained on a 20mm sieve

Test Details	Тор	Base
Surcharge	0.0 kg	0.0 kg
Seating load	250 N	250 N
Water content	13 %	13 %
CBR Value	64 %	70 %

Top of Specimen

Base of Specimen

Tested by AK
Checked and Approved by

S Burke - Senior Technician 18/09/2024 Project Number:

GEO / 41089

Project Name:

CALIFORNIA BEARING RATIO

Location TP106 Sample Depth 2.00-2.50 m

Sample Type LB

Description:

Dark grey mottled brown gravelly slightly sandy silty CLAY.

PREPARATION DETAILS

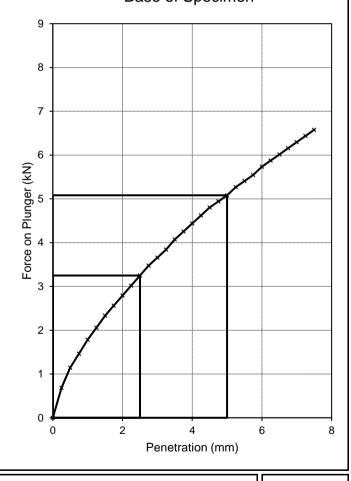
The specimen was tested in an unsoaked condition.

The specimen was tested at optimum water content

The specimen was prepared by dynamic compaction using a 2.5 kg rammer

Prepared bulk density 2.15 Mg/m³

Prepared dry density 1.96 Mg/m³


7.6 % of the sample was retained on a 20mm sieve

Test Details	Тор	Base
Surcharge	0.0 kg	0.0 kg
Seating load	250 N	50 N
Water content	9.6 %	9.9 %
CBR Value	34 %	25 %

Top of Specimen

9 8 7 (Ny) beginned to be a second of the se

Base of Specimen

Tested by AK
Checked and Approved by

S Burke - Senior Technician 18/09/2024 Project Number:

Project Name:

GEO / 41089

COLEG

1705 - Shear Vane - 41089.XLSM

SHEAR STRENGTH BY VANE METHODS

Location	Depth m	Sample Ref	Specimen Ref / Depth (m)	Sample Type	Description	Water Content BS EN ISO 17892-1 : 2014	Laboratory Vane - Peak BS 1377-2 : 2022 : 24	Laboratory Vane - Remoulded BS 1377-2 : 2022 : 24	Torvane	Pilcon Hand Vane	Pocket Penetrometer
						%	kPa	kPa	kPa	kPa	kPa
SA201	0.80-1.10			LB	Brown slightly sandy gravelly silty CLAY with rare roots and cobbles.	13.5				93	
SA203	0.70-1.00			LB	Dark grey slightly sandy slightly gravelly silty CLAY.	20.1				35	
SA204	0.60-1.00			LB	Grey mottled brown slightly sandy silty CLAY.	18.6				37	
SA205	0.40-0.60			LB	Dark brown sandy silty clayey GRAVEL with occasional cobbles and	16.3				95	
TP105	0.70-1.10			LB	Yellowish brown slightly sandy slightly gravelly silty CLAY.	20.2				93	
TP105	2.20-2.50			LB	Dark brown sandy silty gravelly CLAY with rare cobbles.	14.1				91	

Checked and Approved by:

5 Burke

GL Version 06.220913-1705

S Burke - Senior Technician 17/09/2024 Project Number:

Project Name:

GEO / 41089

COLEG SIR GAR C4103 **GEOLABS**

Appendix VI

Soil Profile:

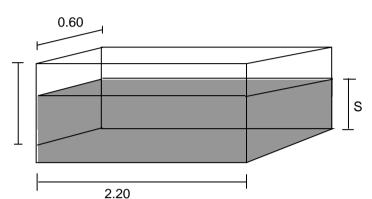
Depth (m)		Description
From:	To:	
0.00	0.30	MADE GROUND: Grass over dark brown black clayey gravelly sand.
0.30	0.70	MADE GROUND: Dark brown sandy gravelly clay.
0.70	1.90	Soft yellowish brown slightly sandy slightly gravelly silty CLAY.

Sketch plan of test zone

Not to scale

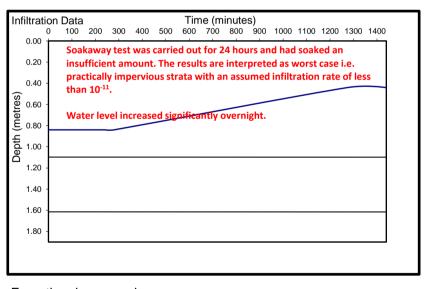
All dimensions in metres.

porosity (N) = 0.42 (measured in laboratory) S= Storage depth (m) 1.90 Water level from 0.84 to 1.90m.


No groundwater was encountered

Gives the Figures

$$S= 1.06 \text{ m}$$


$$a_{p50}= 4.29 \text{ m}^2$$

$$V_{p75-25}= 0.70 \text{ m}^3$$

13/08/2024

Soakaway Test Run 1 Test Date:

Time	Depth
(minutes)	(m)
0	0.84
2	0.84
4	0.84
6	0.84
10	0.84
20	0.84
40	0.84
60	0.84
90	0.84
120	0.84
180	0.84
240	0.84
280	0.84
1276	0.44
1440	0.44

From the above graph,

$$t_{p75}$$
= N/A (min) t_{p25} = N/A (min)

Soil Infiltration Rate:
$$f = V_{p75-25} \times N = N/A$$

$$a_{p50} \times t_{p75-25}$$

$$f_{run1} = N/A$$
 m/s

Test and analysis carried out in general accordance with BRE Digest 365: 2003

Job No: C4103

Site: Coleg Sir Gar

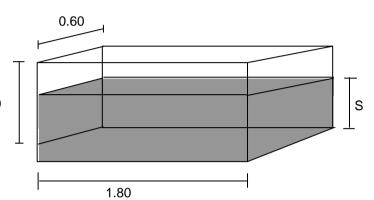
Soil Profile:

Depth (m)		Description
From:	To:	
0.00	0.35	Grass over dark brown sandy slightly gravelly CLAY (TOPSOIL).
0.35	1.30	Firm yellow brown mottled grey slightly sandy slightly gravelly CLAY.
1.30	1.70	Firm yellow / orange brown mottled grey slightly sandy slightly gravelly CLAY

Test Date:

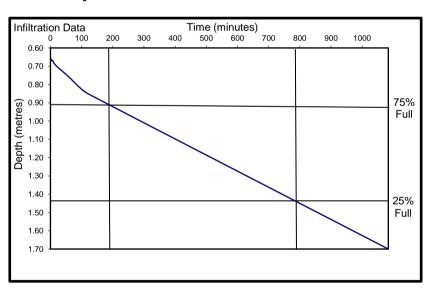
Sketch plan of test zone

Not to scale


All dimensions in metres.

porosity (N) = 0.42 (measured in laboratory) S= Storage depth (m) 1.70 Water level from 0.66 to 1.70m.

No groundwater was encountered


Gives the Figures

 $S = 1.04 \quad m$ $a_{p50} = 3.58 \quad m^2$ $V_{p75-25} = 0.56 \quad m^3$

13/08/2024

Soakaway Test Run 1

Time	Depth
(minutes)	(m)
0	0.66
2	0.66
4	0.67
6	0.67
8	0.67
10	0.68
20	0.70
40	0.73
60	0.76
90	0.81
120	0.85
1084	1.70
·	

From the above graph,

$$t_{p75}$$
= 180 (min) t_{p25} = 780 (min)

Soil Infiltration Rate:
$$f = V_{p75-25} \times N = 4.36E-06$$

$$f_{run1} = 4.36 \times 10^{-6}$$
 m/s

Test and analysis carried out in general accordance with BRE Digest 365: 2003

Job No: C4103

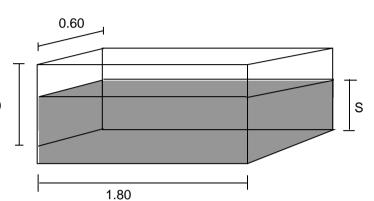
Site: Coleg Sir Gar

Soil Profile:

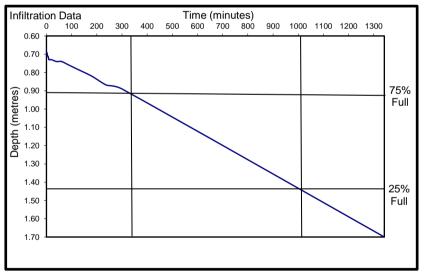
Depth (m)		Description
From:	To:	
0.00	0.35	Grass over dark brown sandy slightly gravelly CLAY (TOPSOIL).
0.35	1.30	Firm yellow brown mottled grey slightly sandy slightly gravelly CLAY.
1.30	1.70	Firm yellow / orange brown mottled grey slightly sandy slightly gravelly CLAY

Sketch plan of test zone

Not to scale


All dimensions in metres.

porosity (N) = 0.42 (measured in laboratory) S= Storage depth (m) 1.70 Water level from 0.69 to 1.70m.


No groundwater was encountered

Gives the Figures

S=	1.01	m
a _{p50} =	3.50	m^2
$V_{p75-25} =$	0.55	m^3

Soakaway Test Run 2 Test Date: 14/08/2024

TITLE	Deptil
(minutes)	(m)
0	0.69
2	0.69
4	0.71
6	0.71
8	0.72
10	0.73
20	0.73
40	0.74
60	0.74
90	0.76
120	0.78
180	0.82
240	0.87
300	0.89
1342	1.70
·	
·	

Depth

Time

From the above graph,

$$t_{p75}$$
= 330 (min) t_{p25} = 1010 (min)

Soil Infiltration Rate:
$$f = V_{p75-25} \times N = 3.81E-06$$

$$f_{run1} = 3.85 \times 10^{-6}$$
 m/s

Test and analysis carried out in general accordance with BRE Digest 365: 2003

Job No: C4103

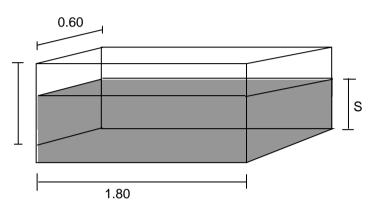
Site: Coleg Sir Gar

Soil Profile:

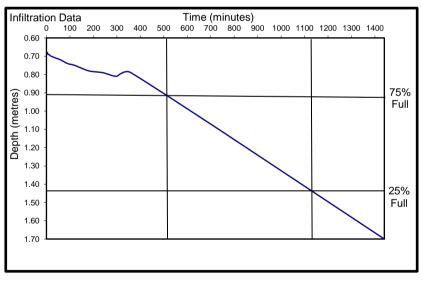
Depth (m)		Description
From:	To:	
0.00	0.35	Grass over dark brown sandy slightly gravelly CLAY (TOPSOIL).
0.35	1.30	Firm yellow brown mottled grey slightly sandy slightly gravelly CLAY.
1.30	1.70	Firm yellow / orange brown mottled grey slightly sandy slightly gravelly CLAY

Sketch plan of test zone

Not to scale


All dimensions in metres.

porosity (N) = 0.42 (measured in laboratory) S= Storage depth (m) 1.70 Water level from 0.68 to 1.70m.


No groundwater was encountered

Gives the Figures

S=	1.02	m
a _{p50} =	3.53	m^2
$V_{p75-25} =$	0.55	m^3

Soakaway Test Run 3 Test Date: 15/08/2024

Depth
(m)
0.68
0.68
0.68
0.69
0.69
0.69
0.70
0.71
0.72
0.74
0.75
0.78
0.79
0.81
0.79
1.70
·

From the above graph,

$$t_{p75}$$
= 510 (min) t_{p25} = 1125 (min)

Soil Infiltration Rate:
$$f = V_{p75-25} \times N = 4.23E-06$$

$$f_{run1} = 4.26 \times 10^{-6}$$
 m/s

Test and analysis carried out in general accordance with BRE Digest 365: 2003

Job No: C4103

Site: Coleg Sir Gar

INSITU SOAKAWAY TEST RESULTS

Page 1 of 1

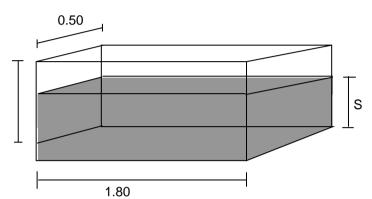
Trialpit No.: SA203

Soil Profile:

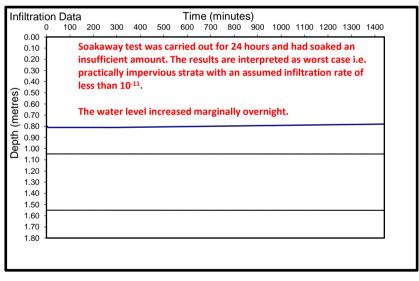
Depth (m)		Description
From:	To:	
0.00	0.30	Grass overlying brown sandy slightly gravelly CLAY (TOPSOIL)
0.30	0.70	Soft to firm brown slightly sandy gravelly CLAY
0.70	1.80	Soft to firm grey with orange brownslightly sandy slightly gravelly silty CLAY.

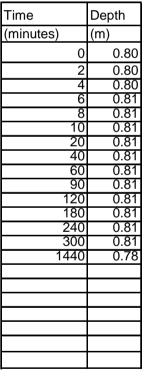
Sketch plan of test zone

Not to scale


All dimensions in metres.

porosity (N) = 0.42 (measured in laboratory) S= Storage depth (m) 1.80 Water level from 0.80 to 1.80m. No groundwater was


No groundwater was encountered.


Gives the Figures

S=	1.00	m
a _{p50} =	3.20	m^2
$V_{p75-25} =$	0.45	m^3

Soakaway Test Run 1 Test Date: 14/08/2024

From the above graph,

$$t_{p75}$$
= N/A (min) t_{p25} = N/A (min)

Soil Infiltration Rate:
$$f = V_{p75-25} \times N$$

$$a_{p50} \times t_{p75-25}$$

f _{run1} =	 m/s
	l.

Test and analysis carried out in general accordance with BRE Digest 365: 2003

Job No: C4103

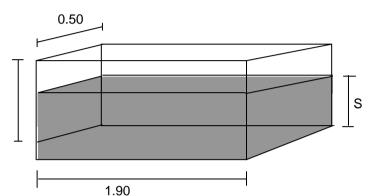
Site: Coleg Sir Gar

Soil Profile:

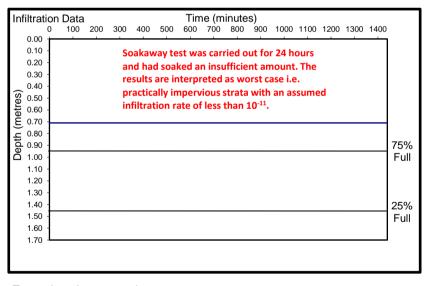
Depth (m)		Description
From:	To:	
0.00	0.25	Grass overlying brown sandy slightly gravelly CLAY (TOPSOIL)
0.25	0.60	Soft pale grey / orange sandy silty CLAY
0.60	1.40	Firm orange brown with grey sandy gravelly CLAY.

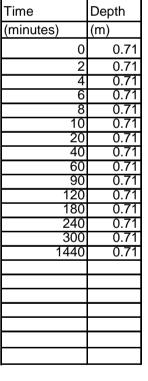
Sketch plan of test zone

Not to scale


All dimensions in metres.

porosity (N) = 0.42 (measured in laboratory) S= Storage depth (m) 1.70 Water level from 0.71 to 1.70m.


No groundwater was encountered


Gives the Figures

S=	0.99	m
a _{p50} =	3.33	m^2
$V_{p75-25} =$	0.47	m^3

Soakaway Test Run 1 Test Date: 14/08/2024

From the above graph,

$$t_{p75}$$
= N/A (min) t_{p25} = N/A (min)

Soil Infiltration Rate:
$$f = V_{p75-25} \times N = a_{p50} \times t_{p75-25}$$

$$f_{run1} = m/s$$

Test and analysis carried out in general accordance with BRE Digest 365: 2003

Job No: C4103

Site: Coleg Sir Gar

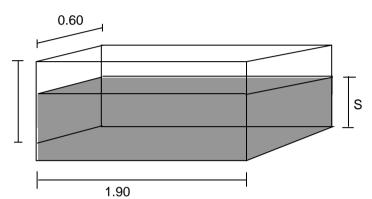
Soil Profile:

Depth (m)		Description
From:	To:	
0.00	0.30	Grass overlying brown sandy slightly gravelly CLAY (TOPSOIL)
0.30	0.70	Dark brown slightly sandy CLAY
0.70	1.50	Soft light brownish grey slightly gravelly sandy CLAY.

Test Date:

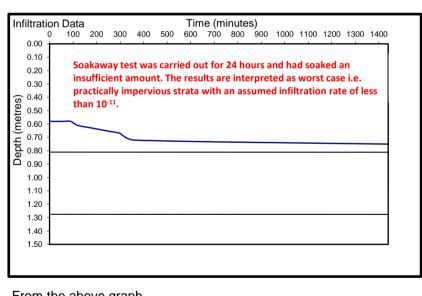
Sketch plan of test zone

Not to scale


All dimensions in metres.

porosity (N) = 0.42 (measured in laboratory) S= Storage depth (m) 1.50 Water level from 0.58 to 1.50m.

No groundwater was encountered


Gives the Figures

S=	0.92	m
a _{p50} =	3.44	m^2
V _{p75-25} =	0.52	m^3

14/08/2024

Soakaway Test Run 1

Time	Depth
(minutes)	(m)
0	0.58
2	0.58
4	0.58
6	0.58
8	0.58
10	0.58
20	0.58
40	0.58
60	0.58
90	0.58
120	0.61
180	0.63
240	0.65
300	0.67
360	0.72
1440	0.75

From the above graph,

$$t_{p75}$$
= N/A (min) t_{p25} = N/A (min)

Soil Infiltration Rate:
$$f = V_{p75-25} \times N = a_{p50} \times t_{p75-25}$$

$$f_{run1} = m/s$$

Test and analysis carried out in general accordance with BRE Digest 365: 2003

Job No: C4103

Site: Coleg Sir Gar

INSITU SOAKAWAY TEST RESULTS

Page 1 of 3

Trialpit No.: SA206

Soil Profile:

Depth (m)		Description
From:	To:	

0.00 0.40 MADE GROUND: Grass over dark brown slightly sandy slightly gravelly clay (topsoil).

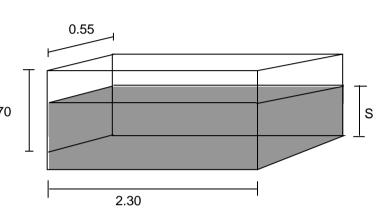
0.40 0.70 MADE GROUND: Orange yellow brown sandy slightly gravelly clay.

0.70 1.70 MADE GROUND: Reworked weathered mudstone, dark grey slightly sandy clayey gravels.

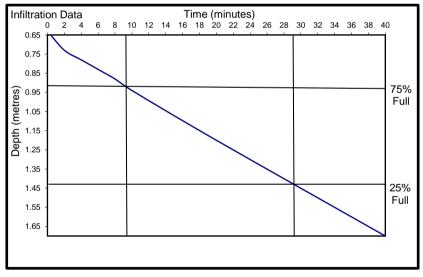
Sketch plan of test zone

Not to scale

All dimensions in metres.


porosity (N) = 0.42 (measured in laboratory) S= Storage depth (m) 1.70 Water level from 0.63 to 1.70m.

No groundwater was


encountered

Gives the Figures

$$S = 1.07 m ap50 = 4.31 m2 Vp75-25 = 0.68 m3$$

Soakaway Test Run 1 Test Date: 13/08/2024

Time Depth (minutes) (m) 0 0.63 2 0.73 4 0.78 6 0.83 0.88 10 0.94 20 1.20 40 1.70

From the above graph,

$$t_{p75}$$
= 9 (min) t_{p25} = 29 (min)

Soil Infiltration Rate:
$$f = V_{p75-25} \times N = 5.49E-05$$

$$f_{run1} = 5.49 \times 10^{-5}$$
 m/s

Test and analysis carried out in general accordance with BRE Digest 365: 2003

Job No: C4103

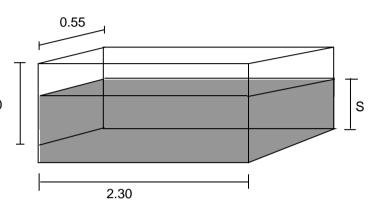
Site: Coleg Sir Gar

Soil Profile:

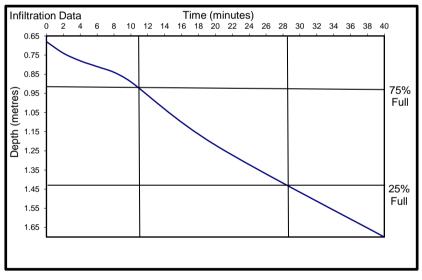
Depth (m)		Description
From:	To:	
0.00	0.40	MADE GROUND: Grass over dark brown slightly sandy slightly gravelly clay (topsoil).
0.40	0.70	MADE GROUND: Orange yellow brown sandy slightly gravelly clay.
0.70	1.70	MADE GROUND: Reworked weathered mudstone, dark grey slightly sandy clayey gravels

Sketch plan of test zone

Not to scale


All dimensions in metres.

porosity (N) = 0.42 (measured in laboratory) S= Storage depth (m) 1.70 Water level from 0.68 to 1.70m.


No groundwater was encountered

Gives the Figures

S=	1.02	m
a _{p50} =	4.17	m^2
$V_{p75-25} =$	0.65	m^3

Soakaway Test Run 2 Test Date: 13/08/2024

Time Depth (minutes) (m) 0 0.68 0.74 4 0.78 6 0.81 8 10 0.84 0.89 20 1.22 40 1.70

From the above graph,

$$t_{p75}$$
= 11 (min) t_{p25} = 28.5 (min)

Soil Infiltration Rate:
$$f = V_{p75-25} \times N = 6.19E-05$$

$$f_{run1} = 6.19 \times 10^{-5}$$
 m/s

Test and analysis carried out in general accordance with BRE Digest 365: 2003

Job No: C4103

Site: Coleg Sir Gar

INSITU SOAKAWAY TEST RESULTS

Page 3 of 3

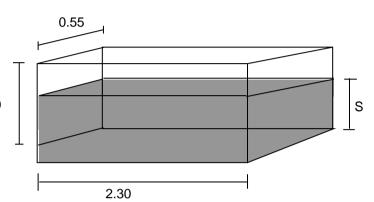
Trialpit No.: SA206

Soil Profile:

Depth (m)		Description
From:	To:	
0.00	0.40	MADE GROUND: Grass over dark brown slightly sandy slightly gravelly clay (topsoil).
0.40	0.70	MADE GROUND: Orange yellow brown sandy slightly gravelly clay.
0.70	1.70	MADE GROUND: Reworked weathered mudstone, dark grey slightly sandy clayey gravels.

Sketch plan of test zone

Not to scale


All dimensions in metres.

porosity (N) = 0.42 (measured in laboratory) S= Storage depth (m) 1.70 Water level from 0.70 to 1.70m.

No groundwater was encountered

Gives the Figures

S=	1.00	m
a _{p50} =	4.12	m^2
$V_{p75-25} =$	0.63	m^3

Soakaway Test Run 3 Test Date: 14/08/2024

From the above graph, t_{p75} = 6 (min) t_{p25} = 17.75 (min)

Soil Infiltration Rate: $f = V_{p75-25} \times N = 9.16E-05$

Time Depth (minutes) (m) 0 0.70 2 0.75 4 0.77 6 0.95 8 10 1.03 1.15 20 1.50 40 1.70

$$f_{run1} = 9.16 \times 10^{-5}$$
 m/s

Test and analysis carried out in general accordance with BRE Digest 365: 2003

Job No: C4103

Site: Coleg Sir Gar

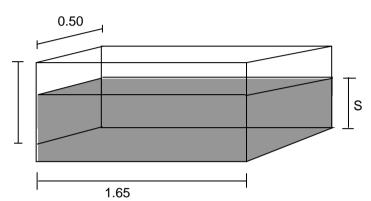
Trialpit No.: SA207

Soil Profile:

Depth (m)		Description
From:	To:	
0.00	0.15	MADE GROUND: Grass shrub overlaying dark brown sandy gravelly clay (topsoil)
0.15	0.35	MADE GROUND: Dark brown sandy gravelly clay.
0.35	0.70	MADE GROUND: Light brown slightly sandy slightly gravelly clay.
0.70	1.80	MADE GROUND: Weathered mudstone, dark grey slightly sandy clayey gravels.

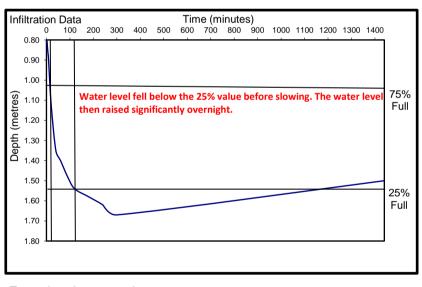
Sketch plan of test zone

Not to scale


All dimensions in metres.

porosity (N) = 0.42 (measured in laboratory) S= Storage depth (m) 1.80 Water level from 0.78 to 1.80m.

Groundwater was encountered at 1.80m


Gives the Figures

S=	1.02	m
a _{p50} =	3.02	m^2
V _{p75-25} =	0.42	m^3

13/08/2024

Soakaway Test Run 1 Test Date:

Time	Depth
(minutes)	(m)
0	0.78
2	0.80
4	0.83
6	0.86
8	0.88
10	0.92
20	1.12
40	1.35
60	1.40
90	1.48
120	1.54
180	1.58
240	1.62
300	1.67
1440	1.50

From the above graph,

$$t_{p75}$$
= 15 (min) t_{p25} = 120 (min)

Soil Infiltration Rate:
$$f = V_{p75-25} \times N = 9.29E-06$$

$$f_{run1} = 9.29 \times 10^{-6}$$
 m/s

Test and analysis carried out in general accordance with BRE Digest 365: 2003

Job No: C4103

Site: Coleg Sir Gar

Client: WEPCo

Trialpit No.: SA207

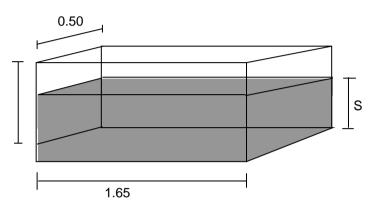
Test Date:

Soil Profile:

Depth (m)		Description
From:	To:	
0.00	0.15	MADE GROUND: Grass shrub overlaying dark brown sandy gravelly clay (topsoil)
0.15	0.35	MADE GROUND: Dark brown sandy gravelly clay.
0.35	0.70	MADE GROUND: Light brown slightly sandy slightly gravelly clay.
0.70	1.80	MADE GROUND: Weathered mudstone, dark grey slightly sandy clayey gravels.

Sketch plan of test zone

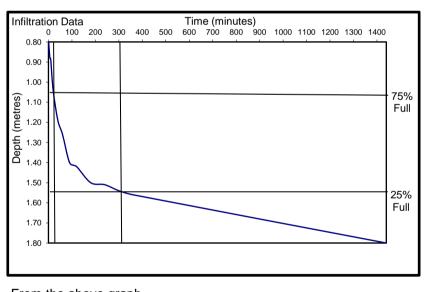
Not to scale


All dimensions in metres.

porosity (N) = 0.42 (measured in laboratory) S= Storage depth (m) 1.80 Water level from 0.79 to 1.80m.

No groundwater was encountered

Gives the Figures


S=	1.01	m
a _{p50} =	3.00	m^2
V _{p75-25} =	0.42	m^3

14/08/2024

(min)

Soakaway Test Run 2

TITLE	Debili
(minutes)	(m)
0	0.79
2	0.82
4	0.85
6	0.88
8	0.88
10	0.89
20	1.04
40	1.19
60	1.26
90	1.40
120	1.42
180	1.50
240	1.51
300	1.54
360	1.56
1440	1.80
`	

Depth

Time

From the above graph,

$$t_{p75}$$
= 20 (min) t_{p25} = 300

Soil Infiltration Rate:
$$f = V_{p75-25} \times N = 3.48E-06$$

$$f_{run1} = 3.48 \times 10^{-6}$$
 m/s

Test and analysis carried out in general accordance with BRE Digest 365: 2003

Job No: C4103

Site: Coleg Sir Gar

Client: WEPCo

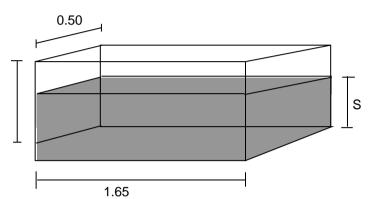
Trialpit No.: SA207

Soil Profile:

Depth (m)		Description
From:	To:	
0.00	0.15	MADE GROUND: Grass shrub overlaying dark brown sandy gravelly clay (topsoil)
0.15	0.35	MADE GROUND: Dark brown sandy gravelly clay.
0.35	0.70	MADE GROUND: Light brown slightly sandy slightly gravelly clay.
0.70	1.80	MADE GROUND: Weathered mudstone, dark grey slightly sandy clayey gravels.

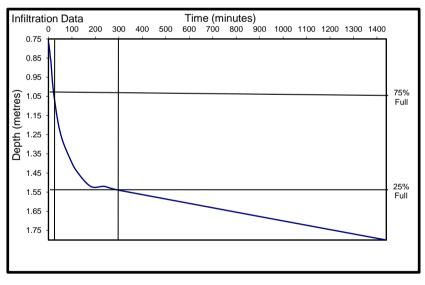
Sketch plan of test zone

Not to scale


All dimensions in metres.

porosity (N) = 0.42 (measured in laboratory) S= Storage depth (m) 1.80 Water level from 0.77 to 1.80m.

No groundwater was encountered.


Gives the Figures

S=	1.03	m
a _{p50} =	3.04	m^2
V _{p75-25} =	0.42	m^3

15/08/2024

Soakaway Test Run 3 Test Date:

Time	Depth
(minutes)	(m)
0	0.77
2	0.78
4	0.80
6	0.82
8	0.85
10	0.86
20	1.01
40	1.18
60	1.28
90	1.37
120	1.44
180	1.52
240	1.52
300	1.54
1440	1.80

From the above graph,

$$t_{p75}$$
= 20 (min) t_{p25} = 300 (min)

Soil Infiltration Rate:
$$f = V_{p75-25} \times N = 3.49E-06$$

$$f_{run1} = 3.49 \times 10^{-6}$$
 m/s

Test and analysis carried out in general accordance with BRE Digest 365: 2003

Job No: C4103

Site: Coleg Sir Gar

Client: WEPCo

Appendix VII

Report No: 12240-1 Report Date: 15/08/2024

Client: HSP Consulting Engineers Ltd

Address: Lawrence House 6 Meadowbank Wav Eastwood, Nottingham

NG16 3SB

Site: Coleg Sir Gar, Pibwrlwyd Ln, Carmarthen, SA31 2NH

Test Details

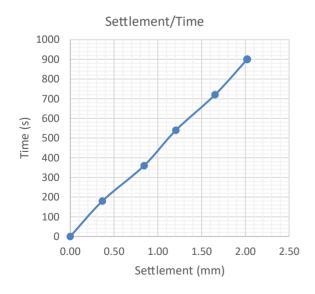
Date of Test: 15/08/2024 Test Location: 1

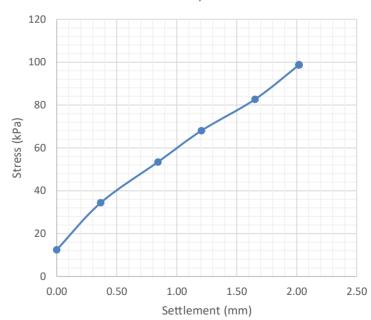
Description: Brown CLAY Reaction Load: 8 Tonne Excavator

Material Class: Formation Weather: Light Rain

Layer: 0.4m BGL Plate Diameter (mm): 295 Condition: The results apply only to the location tested and the material was tested in an 'as found' condition

Test Results


Deviations: No deviations from the test method were employed.


Time, s	Settlement, mm	Plate Stress, kPa
0	0.00	12
180	0.37	34
360	0.84	53
540	1.21	68
720	1.65	83
900	2.02	99

Maximum Applied Stress (kPa):	99
Maximum Settlement (mm):	2.02
Equivalent CBR Value (%):	2
Modulus of Subgrade Reaction, k ₇₆₂ (MN/m ² /m):	24

Note: Supplemental test method, calculation of Nominal CBR Value and Modulus of Subgrade Reaction: IAN 73/06 revision 1 (2009), HD 25/94 (withdrawn)

Settlement/Stress

For and on behalf of Hixtra Ltd

Report No: 12240-2 Report Date: 15/08/2024

Client: HSP Consulting Engineers Ltd

Address: Lawrence House 6 Meadowbank Way Eastwood, Nottingham

NG16 3SB

Site: Coleg Sir Gar, Pibwrlwyd Ln, Carmarthen, SA31 2NH

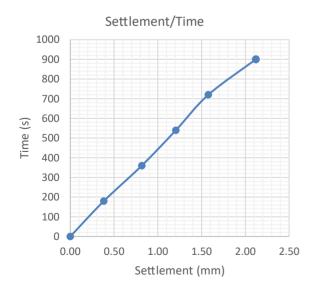
Test Details

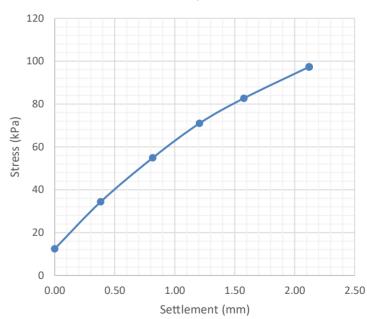
Test Location: CBR 03 Date of Test: 15/08/2024 Description: Brown CLAY Reaction Load: 8 Tonne Excavator

Material Class: Formation Weather: Light Rain

Layer: 0.5m BGL Plate Diameter (mm): 295 Condition: The results apply only to the location tested and the material was tested in an 'as found' condition

Test Results


Deviations: No deviations from the test method were employed.


Time, s	Settlement, mm	Plate Stress, kPa
0	0.00	12
180	0.38	34
360	0.82	55
540	1.21	71
720	1.58	83
900	2.12	97

Maximum Applied Stress (kPa):	97
Maximum Settlement (mm):	2.12
Equivalent CBR Value (%):	3
Modulus of Subgrade Reaction, k ₇₆₂ (MN/m ² /m):	25

Note: Supplemental test method, calculation of Nominal CBR Value and Modulus of Subgrade Reaction: IAN 73/06 revision 1 (2009), HD 25/94 (withdrawn)

Settlement/Stress

For and on behalf of Hixtra Ltd

Report No: 12240-3 Report Date: 15/08/2024

Client: HSP Consulting Engineers Ltd

Address: Lawrence House 6 Meadowbank Way Eastwood, Nottingham

NG16 3SB

Site: Coleg Sir Gar, Pibwrlwyd Ln, Carmarthen, SA31 2NH

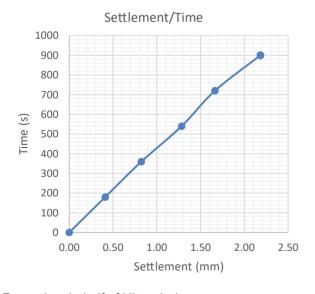
Test Details

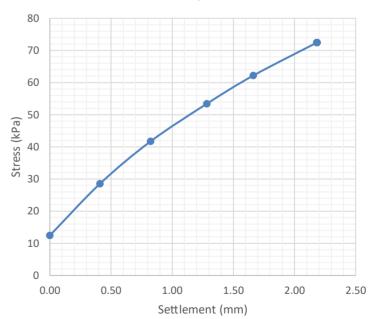
Test Location: CBR 02 Date of Test: 15/08/2024 Description: Brown CLAY Reaction Load: 8 Tonne Excavator

Material Class: Formation Weather: Overcast

Layer: 0.5m BGL Plate Diameter (mm): 295 Condition: The results apply only to the location tested and the material was tested in an 'as found' condition

Test Results


Deviations: No deviations from the test method were employed.


Time, s	Settlement, mm	Plate Stress, kPa
0	0.00	12
180	0.41	29
360	0.82	42
540	1.28	53
720	1.66	62
900	2.18	72

Maximum Applied Stress (kPa):	72
Maximum Settlement (mm):	2.18
Equivalent CBR Value (%):	1
Modulus of Subgrade Reaction, k ₇₆₂ (MN/m ² /m):	18

Note: Supplemental test method, calculation of Nominal CBR Value and Modulus of Subgrade Reaction: IAN 73/06 revision 1 (2009), HD 25/94 (withdrawn)

Settlement/Stress

For and on behalf of Hixtra Ltd

Report No: 12240-4 Report Date: 15/08/2024

Client: HSP Consulting Engineers Ltd

Address: Lawrence House 6 Meadowbank Way Eastwood, Nottingham

NG16 3SB

Site: Coleg Sir Gar, Pibwrlwyd Ln, Carmarthen, SA31 2NH

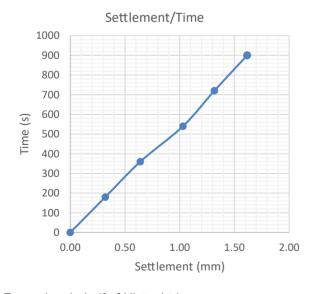
Test Details

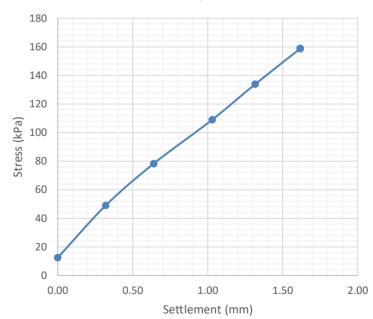
Test Location: CBR 04 Date of Test: 15/08/2024 Description: Brown CLAY Reaction Load: 8 Tonne Excavator

Material Class: Formation Weather: Overcast

Layer: 0.4m BGL Plate Diameter (mm): 295 Condition: The results apply only to the location tested and the material was tested in an 'as found' condition

Test Results


Deviations: No deviations from the test method were employed.


Time, s	Settlement, mm	Plate Stress, kPa
0	0.00	12
180	0.32	49
360	0.64	78
540	1.03	109
720	1.32	134
900	1.62	159

Maximum Applied Stress (kPa):	159
Maximum Settlement (mm):	1.62
Equivalent CBR Value (%):	7
Modulus of Subgrade Reaction, k ₇₆₂ (MN/m ² /m):	45

Note: Supplemental test method, calculation of Nominal CBR Value and Modulus of Subgrade Reaction: IAN 73/06 revision 1 (2009), HD 25/94 (withdrawn)

Settlement/Stress

For and on behalf of Hixtra Ltd

Report No: 12240-5 Report Date: 15/08/2024

Client: HSP Consulting Engineers Ltd

Address: Lawrence House 6 Meadowbank Way Eastwood, Nottingham

NG16 3SB

Site: Coleg Sir Gar, Pibwrlwyd Ln, Carmarthen, SA31 2NH

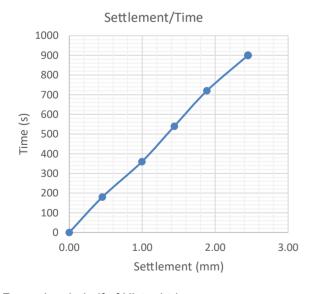
Test Details

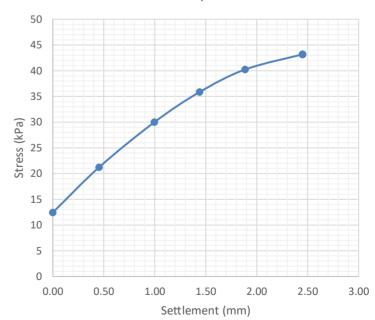
Test Location: CBR 05 Date of Test: 15/08/2024 Description: Brown CLAY Reaction Load: 8 Tonne Excavator

Material Class: Formation Weather: Overcast

Layer: 0.6m BGL Plate Diameter (mm): 295 Condition: The results apply only to the location tested and the material was tested in an 'as found' condition

Test Results


Deviations: No deviations from the test method were employed.


Time, s	Settlement, mm	Plate Stress, kPa
0	0.00	12
180	0.45	21
360	1.00	30
540	1.44	36
720	1.89	40
900	2.45	43

54.	
Maximum Applied Stress (kPa):	43
Maximum Settlement (mm):	2.45
Equivalent CBR Value (%):	1
Modulus of Subgrade Reaction, k ₇₆₂ (MN/m ² /m):	12

Note: Supplemental test method, calculation of Nominal CBR Value and Modulus of Subgrade Reaction: IAN 73/06 revision 1 (2009), HD 25/94 (withdrawn)

Settlement/Stress

For and on behalf of Hixtra Ltd

Appendix VIII

Project Number Project Name Client	C4103 Coleg Sir WEPCo	Coleg Sir Gar								101
		Detection Limit								
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppn	Depth of Installation. (mbgl)	Depth of Groundwater (mbgl
00:00	4.9	<0.1	<0.1	18.4	0.1	<1	<1		5.05	0.65
00:15	4.9	<0.1	<0.1	17.9	0.7	<1	<1			
00:30	4.9	<0.1	<0.1	18.3	0.5	<1	<1			
00:45	4.9	<0.1	<0.1	18.5	0.4	<1	<1			
01:00	4.9	<0.1	<0.1	18.7	0.3	<1	<1			
01:15	4.9	<0.1	<0.1	18.8	0.3	<1	<1			
01:30	4.9	<0.1	<0.1	18.9	0.2	<1	<1			
01:45	4.9	<0.1	<0.1	19.0	0.2	<1	<1			
02:00	4.9	<0.1	<0.1	19.0	0.2	<1	<1			
02:15	4.9	<0.1	<0.1	19.0	0.1	<1	<1			
02:30	4.9	<0.1	<0.1	19.0	0.1	<1	<1			
02:45	4.9	<0.1	<0.1	19.0	0.1	<1	<1			
03:00	4.9	<0.1	<0.1	19.0	0.1	<1	<1			
03:15										
03:30										
03:45										
04:00										
04:15										
04:30										
04:45										
05:00										
Steady	4.9	<0.1	<0.1	19.0	0.1	<1	<1	#####	5.05	0.65
Peak	4.9	0.0	0.0	19.0	0.7	0.0	0.0	0.0	5.05	0.65
Date 28/08/2024	Engine	es:		Barometric Pressure, mbar			e, mbar	10	019	
					Pressure Trend			Ste	eady	
	Equipm	ent	GFM43	36		Air Te	emp (°C)	+	L7

Project Name	C4103 Coleg Sir WEPCo	Coleg Sir Gar								102
				Det	ection	Limit			_	
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppr	Depth of Installation. (mbgl)	Depth of Groundwater (mbg
00:00	<0.1	<0.1	<0.1	18.9	0.2	<1	<1		5.00	3.91
00:15	<0.1	<0.1	<0.1	15.7	1.8	<1	<1			
00:30	<0.1	<0.1	<0.1	14.8	2	<1	<1			
00:45	<0.1	<0.1	<0.1	14.3	2.2	<1	<1			
01:00	<0.1	<0.1	<0.1	14.2	2.2	<1	<1			
01:15	<0.1	<0.1	<0.1	13.9	2.3	<1	<1			
01:30	<0.1	<0.1	<0.1	13.8	2.3	<1	<1			
01:45	<0.1	<0.1	<0.1	13.7	2.4	<1	<1			
02:00	<0.1	<0.1	<0.1	13.7	2.4	<1	<1			
02:15	<0.1	<0.1	<0.1	13.8	2.3	<1	<1			
02:30	<0.1	<0.1	<0.1	13.8	2.3	<1	<1			
02:45	<0.1	<0.1	<0.1	13.8	2.3	<1	<1			
03:00	<0.1	<0.1	<0.1	13.8	2.3	<1	<1			
03:15		-								
03:30	1							\vdash		
03:45	+							1		
04:00	1	-			1			1	1	
04:15	1 1							1		
04:30	1							1		
04:45	+							+		
05:00	40.1	40.1	40.1	13.0	2.2	-4	-4	444444	F 00	2.01
Steady Peak	<0.1 0.0	<0.1	<0.1	13.8 18.9	2.3	<1	<1	#####	5.00 5.00	3.91
	0.0			10.9	2.4 0.0 0.0 0.0				5.00	3.91
Date 28/08/2024	Engine	Notes: NC			Barometric Pressure, mb		e, mbar	1019		
						Pressu	re Tren	ıd	Ste	eady
	Equipm	ent	ent GFM436 Air Temp (°C)					1	L7	

Project Number Project Name Client	C4103 Coleg Sir WEPCo	Coleg Sir Gar								107
				Det	ection I	Limit				
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppi	Depth of Installation. (mbgl)	Depth of Groundwater (mbg
00:00	<0.1	<0.1	<0.1	19.3	0	<1	<1		3.00	0.60
00:15	<0.1	<0.1	<0.1	6.8	5.8	<1	<1			
00:30	<0.1	<0.1	<0.1	6.2	5.9	<1	<1			
00:45	<0.1	<0.1	<0.1	6.4	6.9	<1	<1			
01:00	<0.1	<0.1	<0.1	6.6	5.8	<1	<1			
01:15	<0.1	<0.1	<0.1	6.8	5.7	<1	<1			
01:30	<0.1	<0.1	<0.1	7.0	5.5	<1	<1			
01:45	<0.1	<0.1	<0.1	7.3	5.4	<1	<1			
02:00	<0.1	<0.1	<0.1	7.4	5.2	<1	<1			
02:15 02:30	<0.1	<0.1	<0.1	7.5 7.5	5.2 5.2	<1 <1	<1 <1			
02:45	<0.1	<0.1	<0.1	7.5	1	<1	<1		 	
03:00	<0.1	<0.1	<0.1	7.5	5.2 5.2	<1	<1			
03:15	\\\ 0.1	<0.1	\U.1	7.5	5.2	<u> </u>	<u> </u>			
03:30										
03:45	++	1	 	1	1			+ +		
04:00	++ +							1		
04:15	++	 						 		
04:30	11 1									
04:45	 							† †		
05:00	 							† †		
Steady	<0.1	<0.1	<0.1	7.5	5.2	<1	<1	#####	3.00	0.60
Peak	0.0	0.0	0.0	19.3	6.9	0.0	0.0	0.0	3.00	0.60
Date 28/08/2024	Engine	Notes: er NC			Barometric Pressure, mbar			1019		
	Facilia		CENAA	20			re Tren		Steady	
	Equipm	ent	ent GFM436 Air Temp (°C)					1 1	L7	

Project Name	C4103 Coleg Sir Gar WEPCo WS109									109
				Det	ection I	Limit				
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppr	Depth of Installation. (mbgl)	Depth of Groundwater (mbg
00:00	<0.1	<0.1	<0.1	19.1	0	<1	<1		3.00	1.51
00:15	<0.1	<0.1	<0.1	13.9	1.0	<1	<1			
00:30	<0.1	<0.1	<0.1	12.9	1.0	<1	<1			
00:45	<0.1	<0.1	<0.1	12.8	1.0	<1	<1			
01:00	<0.1	<0.1	<0.1	12.8	1.0	<1	<1			
01:15	<0.1	<0.1	<0.1	12.8	1.0	<1	<1			
01:30	<0.1	<0.1	<0.1	12.8	1.0	<1	<1			
01:45	<0.1	<0.1	<0.1	12.8	1.0	<1	<1			
02:00	<0.1	<0.1	<0.1	12.8	1.0	<1	<1			
02:15	<0.1	<0.1	<0.1	12.8	1.0	<1	<1			
02:30	<0.1	<0.1	<0.1	12.8	1.0	<1	<1		ļ	
02:45	<0.1	<0.1	<0.1	12.8	1.0	<1	<1			
03:00	<0.1	<0.1	<0.1	12.8	1.0	<1	<1		1	
03:15										
03:30	-							 		
03:45	+ +			1	1				+	
04:00 04:15	+ +							1		
04:30	+							 		
04:45	+			1	1			 	+	
05:00	 							 		
Steady	<0.1	<0.1	<0.1	12.8	1.0	<1	<1	#####	3.00	1.51
Peak	0.0	0.0	0.0	19.1	1.0	0.0	0.0	0.0	3.00	1.51
Date 28/08/2024	Engine	Not	es: NC		Barometric Pressure, mbar Pressure Trend			1019 Steady		
	Equipm	ent GFM436 Air Temp (°C)				1	17			

Project Name C	C4103 Coleg Sir	Gar							RO	101
Client V	WEPCo									
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppn	Depth of Installation. (mbgl)	Depth of Groundwater (mbgl)
00:00									5.05	0.00
00:15			Una	ble to m	nonitor.	Water	level			
00:30			rec	orded a	bove b	ung. Bai	iled			
00:45			ар	proxima	ately 10	litres w	rith			
01:00				immed	liate red	charge.				
01:15										
01:30										
01:45										
02:00										
02:15										
02:30										
02:45										
03:00										
03:15										
03:30										
03:45										
04:00	$\sqcup \sqcup$									
04:15	$\sqcup \sqcup$									
04:30										
04:45										
05:00	igwdot									
Steady	#####	#####		#####				#####	5.05	0.00
Peak	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.05	0.00
Date 05/09/2024	Enginee	Notes: eer NC			Barometric Pressure, mbar			1017		
	Equipm	ent	Pressure Trend				nd STEADY			

Project Name	C4103 Coleg Sir WEPCo	Coleg Sir Gar VEPCo									
				Det	ection	Limit					
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1			
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppr	Depth of Installation. (mbgl)	Depth of Groundwater (mbg	
00:00	<0.1	<0.1	<0.1	17.0	0.0	<1	<1		5.00	4.02	
00:15	<0.1	<0.1	<0.1	11.4	3.6	<1	<1				
00:30	<0.1	<0.1	<0.1	10.4	3.9	<1	<1				
00:45	<0.1	<0.1	<0.1	10.4	3.9	<1	<1				
01:00	<0.1	<0.1	<0.1	10.4	3.9	<1	<1				
01:15	<0.1	<0.1	<0.1	10.3	4.0	<1	<1				
01:30	<0.1	<0.1	<0.1	10.3	3.9	<1	<1				
01:45	<0.1	<0.1	<0.1	10.2	4.0	<1	<1				
02:00	<0.1	<0.1	<0.1	10.2	4.0	<1	<1				
02:15	<0.1	<0.1	<0.1	10.2	4.0	<1	<1				
02:30	<0.1	<0.1	<0.1	10.2	4.0	<1	<1				
02:45	<0.1	<0.1	<0.1	10.2	4.0	<1	<1				
03:00	<0.1	<0.1	<0.1	10.2	4.0	<1	<1				
03:15											
03:30	+										
03:45	1 1							1	-		
04:00	1 1							1			
04:15								}			
04:30	1							$ar{}$			
04:45 05:00	1							$ar{}$			
Steady	<0.1	<0.1	<0.1	10.2	4.0	<1	<1	#####	5.00	4.02	
Peak	0.0	0.0	0.0	17.0	4.0	0.0	0.0	0.0	5.00	4.02	
Date	1				<u> </u>	<u> </u>	<u> </u>		0.00		
05/09/2024	Engine				-	10)17				
		Pressure Trend				STE	ADY				
	Equipm	oment GFM436 Air Temp (°C)			C) 14		L4				

Project Number Project Name Client	C4103 Coleg Sir WEPCo	oleg Sir Gar WS10								
				Det	ection	Limit				
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppi	Depth of Installation. (mbgl)	Depth of Groundwater (mb <u>ք</u>
00:00	0.5	<0.1	<0.1	16.8	0.0	<1	<1		3.00	0.56
00:15	0.5	<0.1	<0.1	16.9	0.3	<1	<1			
00:30	0.5	<0.1	<0.1	16.9	0.3	<1	<1			
00:45	0.5	<0.1	<0.1	17.0	0.3	<1	<1			
01:00	0.5	<0.1	<0.1	17.0	0.3	<1	<1			
01:15	0.5	<0.1	<0.1	17.0	0.3	<1	<1			
01:30	0.5	<0.1	<0.1	17.0	0.3	<1	<1			
01:45	0.5	<0.1	<0.1	17.0	0.3	<1	<1			
02:00	0.5	<0.1	<0.1	17.0	0.3	<1	<1			
02:15	0.5	<0.1	<0.1	17.0	0.3	<1	<1			
02:30	0.5	<0.1	<0.1	17.0	0.3	<1	<1			
02:45	0.5	<0.1	<0.1	17.0	0.3	<1	<1			
03:00	0.5	<0.1	<0.1	17.0	0.3	<1	<1			
03:15		ļ								
03:30						1				
03:45	\coprod	<u> </u>								
04:00						<u> </u>				
04:15	\coprod	<u> </u>								
04:30	\coprod									
04:45										
05:00										
Steady	0.5	<0.1	<0.1	17.0	0.3	<1	<1	#####	3.00	0.56
Peak	0.5	0.0	0.0	17.0	0.3	0.0	0.0	0.0	3.00	0.56
Date 05/09/2024	Engine				e, mbar	10	017			
		Pressure Trend		nd	STE	ADY				
	Equipm	oment GFM436 Air Temp (°C)			2) 14		L 4			

Project Name	C4103 Coleg Sir WEPCo	Gar		WS	109					
				Det	ection	Limit				
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppr	Depth of Installation. (mbgl)	Depth of Groundwater (mbg
00:00	1.6	<0.1	<0.1	16.5	0	<1	<1		3.00	1.50
00:15	1.6	<0.1	<0.1	15.4	0.8	<1	<1			
00:30	1.6	<0.1	<0.1	15.3	0.7	<1	<1			
00:45	1.6	<0.1	<0.1	15.4	0.7	<1	<1			
01:00	1.6	<0.1	<0.1	15.4	0.7	<1	<1			
01:15	1.6	<0.1	<0.1	15.5	0.7	<1	<1			
01:30	1.6	<0.1	<0.1	15.5	0.7	<1	<1		ļ	
01:45	1.6	<0.1	<0.1	15.4	0.7	<1	<1			
02:00	1.6	<0.1	<0.1	15.5	0.7	<1	<1			
02:15	1.6	<0.1	<0.1	15.5	0.7	<1	<1			
02:30	1.6	<0.1	<0.1	15.5	0.7	<1	<1		ļ	
02:45	1.6	<0.1	<0.1	15.5	0.7	<1	<1		<u> </u>	
03:00	1.6	<0.1	<0.1	15.5	0.7	<1	<1		1	
03:15	-								1	
03:30 03:45	╫┈╢									
03:45	╫┈┤	1		1					1	
04:00	╫┈╫								1	
04:30	 		-	1					1	
04:45	╫┈┤								1	
05:00	 								1	
Steady	1.6	<0.1	<0.1	15.5	0.7	<1	<1	#####	3.00	1.50
Peak	1.6	0.0	0.0	16.5	0.8	0.0	0.0	0.0	3.00	1.50
Date 05/09/2024	Engine	Notes:		Barometric Pressure, mbar						
	Equipm	Pressure Trend ent GFM436 Air Temp (°C)			+	ADY L4				

Project Name	C4103 Coleg Sir WEPCo	Gar			RO	101				
Silent .				Dot	ection L	imit		1		
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
		\0.1	\0.1	\0.1	\0.1	<u> </u>	<u>,,</u>			<u> </u>
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppn	Depth of Installation. (mbgl)	Depth of Groundwater (mbg
00:00									5.05	0.00
00:15				ble to m						
00:30		recorded above bung. Bailed								
00:45		approximately 10 litres with								
01:00				immed	liate red	charge.				
01:15				•		T				
01:30										
01:45										
02:00										
02:15										
02:30										
02:45										
03:00										
03:15										
03:30	 	1								
03:45		-								
04:00										
04:15 04:30	1	1								
04:30	1	1		-						
05:00	1									
Steady	#####	##### 0.0 ##### ##### ##### ##### #####					#####	5.05	0.00	
Peak	0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0						5.05	0.00	
Date 12/09/2024	Enginee	Notes:				1018				
12,03,2024	Equipm	Pressure Trend			d		ady 11			

Project Name	C4103 Coleg Sir WEPCo	Gar		RO	102					
				Det	ection l	Limit				
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppr	Depth of Installation. (mbgl)	Depth of Groundwater (mbg
00:00	<0.1	<0.1	<0.1	17.2	<0.1	<1	<1		5.00	3.30
00:15	<0.1	<0.1	<0.1	10.4	3.7	<1	<1		<u> </u>	
00:30	<0.1	<0.1	<0.1	8.9	4.4	<1	<1			
00:45	<0.1	<0.1	<0.1	8.8	4.4	<1	<1			
01:00	<0.1	<0.1	<0.1	9.2	4.3	<1	<1			
01:15	<0.1	<0.1	<0.1	9.5	4.3	<1	<1			
01:30	<0.1	<0.1	<0.1	9.6	4.1	<1	<1			
01:45	<0.1	<0.1	<0.1	10.9	3.9	<1	<1			
02:00	<0.1	<0.1	<0.1	11.0	3.3	<1	<1			
02:15	<0.1	<0.1	<0.1	11.0	3.5	<1	<1		ļ	
02:30	<0.1	<0.1	<0.1	11.0	3.4	<1	<1			
02:45	<0.1	<0.1	<0.1	11.0	3.4	<1	<1			
03:00	<0.1	<0.1	<0.1	11.0	3.4	<1	<1			
03:15		<0.1	<0.1	11.0	3.4	<1	<1			
03:30		<0.1	<0.1	11.0	3.4	<1	<1			
03:45	 									
04:00										
04:15	 			<u> </u>		<u> </u>	-		1	
04:30	╟			1		1	1			
04:45										
05:00	10.1	.0.1	.6.1	46.0	2.4				F 22	2.22
Steady	<0.1	<0.1	<0.1	11.0	3.4	<1	<1 0.0	#####	5.00	3.30
Peak	0.0			17.2	4.4	0.0	0.0	0.0	5.00	3.30
Date 12/09/2024	Engine				e, mbar	10)18			
		Pressure Trend			ıd	Ste	eady			
	Equipm	ipment GFM436 Air Temp (°C))	11				

Project Name	C4103 Coleg Sir Gar NEPCo								WS	107
				Det	ection I	Limit				
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
Time	Gas Flow Rate. (l/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppr	Depth of Installation. (mbgl)	Depth of Groundwater (mbչ
00:00	1.2	<0.1	<0.1	17.3	<0.1	<1	<1		3.00	0.34
00:15	1.2	<0.1	<0.1	17.4	0.5	<1	<1			
00:30	1.2	<0.1	<0.1	17.4	0.5	<1	<1			
00:45	1.2	<0.1	<0.1	17.4	0.5	<1	<1			
01:00	1.2	<0.1	<0.1	17.4	0.5	<1	<1			
01:15	1.2	<0.1	<0.1	17.4	0.5	<1	<1			
01:30	1.2	<0.1	<0.1	17.4	0.5	<1	<1			
01:45	1.2	<0.1	<0.1	17.4	0.5	<1	<1			
02:00	1.2	<0.1	<0.1	17.4	0.5	<1	<1			
02:15	1.2	<0.1	<0.1	17.4	0.5	<1	<1			
02:30	1.2	<0.1	<0.1	17.4	0.5	<1	<1			
02:45	1.2									
03:00	1.2		Moni	_	termina		ly due			
03:15				rising	water	levels.				
03:30	igspace									
03:45	\sqcup									
04:00	\sqcup									
04:15	\sqcup									
04:30	\sqcup									
04:45	\sqcup									
05:00										
Steady	1.2	<0.1	0.0	17.4	0.5	<1	<1	#####	3.00	0.34
Peak	1.2	0.0	0.0	17.4	0.5	0.0	0.0	0.0	3.00	0.34
Date 12/09/2024	Enginee	Notes: Engineer NC		Barometric Pressure, mbar					018	
				Pressure Trend			1	eady		
	Equipm	Equipment GFM436 Air Temp (°C))	1	l1				

Project Number Project Name Client	C4103 Coleg Sir WEPCo	Coleg Sir Gar WS109								
				Det	ection	Limit				
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppr	Depth of Installation. (mbgl)	Depth of Groundwater (mbg
00:00	<0.1	<0.1	<0.1	17.2	0.1	<1	<1		3.00	1.32
00:15	<0.1	<0.1	<0.1	15.6	1.8	<1	<1			
00:30	<0.1	<0.1	<0.1	15.7	1.5	<1	<1			
00:45	<0.1	<0.1	<0.1	16	1.3	<1	<1			
01:00	<0.1	<0.1	<0.1	16.2	1.1	<1	<1			
01:15	<0.1	<0.1	<0.1	16.4	0.9	<1	<1			
01:30	<0.1	<0.1	<0.1	16.5	0.8	<1	<1			
01:45	<0.1	<0.1	<0.1	16.6	0.7	<1	<1			
02:00	<0.1	<0.1	<0.1	16.7	0.7	<1	<1			
02:15	<0.1	<0.1	<0.1	16.8	0.6	<1	<1		1	
02:30	<0.1	<0.1	<0.1	16.9	0.6	<1	<1		1	
02:45	<0.1	<0.1	<0.1	16.9	0.6	<1	<1		1	
03:00	<0.1	<0.1	<0.1	16.9	0.6	<1	<1			
03:15										
03:30 03:45	+	1	-	1					1	
04:00	+								1	
04:15	+	1								
04:30	+	1							1	
04:45	+									
05:00		1								
Steady	<0.1	<0.1	<0.1	16.9	0.6	<1	<1	#####	3.00	1.32
Peak	0.0	0.0	0.0	17.2	1.8	0.0	0.0	0.0	3.00	1.32
Date 12/09/2024	Engine)18			
			Pressure Trend				eady			
	Equipm	ent	nt GFM436 Air Temp (°C)			(°C) 11		11		

Project Name	C4103 Coleg Sir WEPCo	oleg Sir Gar EPCo								101
				Det	ection L	imit				
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppn	Depth of Installation. (mbgl)	Depth of Groundwater (mbgl
00:00	1 1			<u> </u>					5.05	0.00
00:15				ble to m						
00:30 00:45	1		recorded above bung. Bailed approximately 25 litres with							
01:00	+ +		ар				/itn			
01:15	+	1		Immed	liate red	charge.	1			
01:30										
01:45	1 1									
02:00										
02:15	1 1									
02:30										
02:45										
03:00										
03:15										
03:30										
03:45	$oxed{\Box}$									
04:00	\sqcup									
04:15	\sqcup									
04:30	\sqcup									
04:45	\sqcup									
05:00	\sqcup						igwdow			
Steady	#####	#####	0.0	#####		#####	#####	#####	5.05	0.00
Peak	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.05	0.00
Date 18/09/2024	Enginee				Barometric Pressure, mbar)25			
	Equipm	Pressure Trend nent GFM436 Air Temp (°C)				+	ADY 17			

Project Name	C4103 Coleg Sir WEPCo	Gar			RO	102				
				Det	ection l	Limit				
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppr	Depth of Installation. (mbgl)	Depth of Groundwater (mbg
00:00	<0.1	<0.1	<0.1	18.0	<0.1	<1	<1		5.00	4.30
00:15	<0.1	<0.1	<0.1	14.2	2.8	<1	<1			
00:30	<0.1	<0.1	<0.1	12.2	3.9	<1	<1			
00:45	<0.1	<0.1	<0.1	11.5	3.6	<1	<1	-		
01:00	<0.1	<0.1	<0.1	11.7	3.8	<1	<1			
01:15	<0.1	<0.1	<0.1	11.9	3.9	<1	<1			
01:30	<0.1	<0.1	<0.1	12.0	3.9	<1	<1			
01:45	<0.1	<0.1	<0.1	11.3	3.4	<1	<1			
02:00 02:15	<0.1 <0.1	<0.1	<0.1	11.2 11.2	3.4	<1 <1	<1 <1			
02:30	<0.1	<0.1	<0.1	11.2	3.4	<1	<1			
02:45	<0.1	<0.1	<0.1	11.2	3.4	<1	<1			
03:00	<0.1	<0.1	<0.1	11.2	3.4	<1	<1			
03:15	10.1	١٥.1	10.1	11.2	3.4	``_	<u> </u>			
03:30										
03:45										
04:00										
04:15		1								
04:30										
04:45										
05:00										
Steady	<0.1	<0.1	<0.1	11.2	3.4	<1	<1	#####	5.00	4.30
Peak	0.0	0.0 0.0 18.0 3.9 0.0 0.0 0.0				0.0	5.00	4.30		
Date 18/09/2024	Enginee			Barometric Pressure, mbar Pressure Trend			STE	D25		
	Equipm	ment GFM436 Air Temp (°C))	1	L7				

Project Number Project Name	C4103 Coleg Sir WEPCo	Coleg Sir Gar VEPCo WS107								
				Det	ection L	imit				
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppi	Depth of Installation. (mbgl)	Depth of Groundwater (mbg
00:00									2.90	0.45
00:15	 		Unable to monitor. Water level							
00:30			recorded above bung. Lifted and							
00:45			bailed approximately 15 litres with							
01:00			immediate recharge close to							
01:15				1	surface		1			
01:30										
01:45		!								
02:00		.		ļ						
02:15										
02:30										
02:45 03:00										
03:15		1		1						
03:30										
03:45	 							-		
04:00	 							 		
04:15	 									
04:30	† †									
04:45	† †									
05:00	† †									
Steady	#####	##### 0.0 ##### ##### ##### ##### ####						#####	2.90	0.45
Peak	0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0					0.0	2.90	0.45	
Date		Notes:					10)25		
18/09/2024	Enginee	r	NC Barometric Pressure, mba			•				
			Pressure Trend			STE	ADY			
	Equipment GFM436 Air Temp (°C) 17		t GFM436 Air Temp (°C)			7				

Project Number Project Name	C4103 Coleg Sir WEPCo				WS	109				
				Det	ection l	_imit			-	
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppr	Depth of Installation. (mbgl)	Depth of Groundwater (mbg
00:00	<0.1	<0.1	<0.1	18	0.1	<1	<1		3.00	1.55
00:15	<0.1	<0.1	<0.1	15.3	1.7	<1	<1			
00:30	<0.1	<0.1	<0.1	15.5	1.5	<1	<1			
00:45	<0.1	<0.1	<0.1	16.2	1.3	<1	<1			
01:00	<0.1	<0.1	<0.1	16.3	1.1	<1	<1			
01:15	<0.1	<0.1	<0.1	16.5	0.9	<1	<1			
01:30	<0.1	<0.1	<0.1	16.6	0.8	<1	<1			
01:45	<0.1	<0.1	<0.1	16.8	0.7	<1	<1			
02:00	<0.1	<0.1	<0.1	17.2	0.5	<1	<1			
02:15	<0.1	<0.1	<0.1	17.2	0.5	<1	<1			
02:30	<0.1	<0.1	<0.1	17.2	0.5	<1	<1			
02:45	<0.1	<0.1	<0.1	17.2	0.5	<1	<1			
03:00	<0.1	<0.1	<0.1	17.2	0.5	<1	<1			
03:15										
03:30										
03:45]]									
04:00		ļ								
04:15										
04:30										
04:45										
05:00										
Steady	<0.1	<0.1	<0.1	17.2	0.5	<1	<1	#####	3.00	1.55
Peak	0.0	0.0	0.0	18.0	1.7	0.0	0.0	0.0	3.00	1.55
Date 18/09/2024	Enginee	Notes: eer NC Baror		Barometric Pressure, mbar				1025		
, , , ,		Pressure Trend			STE	ADY				
								17		

TEST DATE	TEST DATE AND CONDITIONS								
Date	30	/09/202	24						
Atmospheric Pres	sure	982	mB						
Ambient Tempera	ture	22.0	°C						
Environics Serial	No.	50	89						

GFM436 Final Inspection & Calibration Check Certificate

Customer	HSP Consulting Engineers Ltd
Certificate Number	125581
Order Number	339781

Serial Number	13561
Software Version	G436-00.0029/0010

GAS DATA LTD Unit D Earlplace Business Park Fletchamstead Highway Coventry CV4 9XL

Tel 02476303311 Fax 02476307711

Recalibration DUE Date
30/09/25

Instrument Checks								
Keyboard			Display Contrast	✓				
Pump Flow In	550	Accept > 200 cc/min	Pump Flow @ -200mB	350	Accept > 200 cc/min			
Clock Set / Running	✓		Labels Fitted	✓				

Gas Checks									
	CH ₄		CO ₂		02				
	Instrument Gas	True Gas Instrument Gas		True Gas	Instrument Gas	True Gas			
	Readings %	Value %	Value % Readings %		Readings %	Value %			
Sensor	59.7	(0	40.0	40	20.9	20.0			
	Accept ±3.0	60	Accept ±3.0	40	Accept ±0.5	20.9			
	5.0 .Accept ±0.3	5	5.0		6.0				
		5	Accept ±0.3		Accept ±0.3	6			
Zero	0.0	0	0.0	0	0.0	0			
Reading 100% N2	Accept ±0.0	0	Accept ±0.0	0	Accept ±0.1	0			

Optional Gas Checks										
Applie	d Gas & Range	Concentration Tested @		Instrument Readings (ppm)						
Gas Type	Range (ppm)	(ppm)		Zero Reading	Instrument Gas Reading					
H2S	5000	1500	0	Accept ±0.0	1500	Accept ±5.0%				
СО	2000	1000	0	Accept ±0.0	1000	Accept ±5.0%				
Hexane	2.0%	2.0%	0	Accept ±0.0	1.99	Accept ±10.0%				

TEST DATE AND CONDITIONS								
Date 30.9.24								
Atmospheric Pr	982	mB						
Ambient Tempe	22.0	°C						
Environics Seria	508	9						

GAS DATA LTD Unit D Earlplace Business Park Fletchamstead Highway Coventry CV4 9XL UK +44 (0) 24 7630 3311

GFM	1				
		INSTRUMENT DETAILS			
SO Number	Instrument Type	Instrument Serial Number + SW Ve	ersion	Job Number(s)	
339781	9FM436	13561 9436-29/	10	125521	
Calibration Techn	ician	Ilm	– Da	te J.o 9. 2. 4	
Inspection Technic	cian		Da	te 1. 10.24	

	INSTRUMENT	Pass (P), Fail (F) or	INSTRUMENT PACKING	Tick if
	CHECKS	not applicable (NA)	LIST	included
Function	Dust Caps Fitted	b	Instrument	
Tests	Keyboard Test (All Keys)	P	Leather Case	
	Backlight	l	Instrument Strap	/
	Clock Set / Running		AC Battery Charger (UK)	
	Comms Test	. *	AC Battery Charger (EURO)	X
	Pump Flow Test (In & Out)	8	AC Battery Charger (US)	X
	Overall Leak Test (30mB)	n/a	AC Battery Charger (AUS)	>
	Battery Charge Test	P	Gas Sample Pipe - (new issue)	
	Service Date set to?	30-9.26	Flow Sample Pipe - (new issue)	
Channel	Data Logging Enabled?	h	Hard Carry Case	
Tests	Verify CH4/LEL/Hexane/PID	l l	Spares Pot	
	Verify CO2	P	Allen Key	
	Verify O2	P	Temperature Probe	X
	Verify H2S Vane Anemometer		Vane Anemometer	X
	Verify CO	P	USB Cable	
	Verify LEL	é	USB Memory stick	
	Verify 1st Option Gas	N/A	SM V5 Software Ver 6.05	1
	Verify Atmospheric pressure	P	Internal Filter Pack Qty	X
	Verify differential pressure	P	External Filter Pack Qty	X
	Verify flow	ρ	Field Guide	8
	Verify temperature probe input	P	Extra Items:	
	Verify vane anemometer input	P	Somple Tubel	
DataBase	Jobcard(s) completed and signed	(Solving cuses	
Checks	Jobcard(s) booked off database	P	1	
	Calibration certificate completed	P]	
	Complete & print QI record	n/a	1	
Label	No. of Calibration label fitted	GDC 13557	Comments:	
Checks	MCERTS label displayed	WLA		
	Warranty label fitted	P	1	
H2S Range	H2S Range from Sales Order	Sooo ppm		
	H2S Range from Cal Cert	SOOD ppm		
	Over-range value correct?	7	1	
QA No. of High Range CH4/CO2		57487	1	
Cylinders No. of Low Range CH4/CO2/O2		56982	1	
Used	No. of H2S	Co32373	1	
	No. of CO	58346	1	
	No. of Optional Cylinder	NA	1	

Appendix IX

Waste Classification Report

HazWasteOnline[™] classifies waste as either **hazardous** or **non-hazardous** based on its chemical composition, related legislation and the rules and data defined in the current UK or EU technical guidance (Appendix C) (note that HP 9 Infectious is not assessed). It is the responsibility of the classifier named below to:

- a) understand the origin of the waste
- b) select the correct List of Waste code(s)
- c) confirm that the list of determinands, results and sampling plan are fit for purpose
- d) select and justify the chosen metal species (Appendix B)
- e) correctly apply moisture correction and other available corrections
- f) add the meta data for their user-defined substances (Appendix A)
- g) check that the classification engine is suitable with respect to the national destination of the waste (Appendix C)

To aid the reviewer, the laboratory results, assumptions and justifications managed by the classifier are highlighted in pale yellow.

AJ00E-18Q54-MJNF

Job name

HWOL_24-27162-20240906 100127

Description/Comments

General Suite. Proposed school redevelopment.: General Suite. Proposed school redevelopment

Project Site
C4103 Coleg Sir Gar

Classified by

Name: Company:

Matthew Kent HSP Consulting Engineers Limited

Date: Lawrence House 07 Oct 2024 15:25 GMT 6 Meadowbank Way

Telephone: Eastwood 01773 535 555 NG16 3SB

HazWasteOnline™ provides a two day, hazardous waste classification course that covers the use of the software and both basic and advanced waste classification techniques. Certification has to be renewed every 3 years.

HazWasteOnline™ Certification:

CERTIFIED Date

Hazardous Waste Classification
Most recent 3 year Refresher

12 Feb 2020 04 Apr 2023

Next 3 year Refresher due by Apr 2026

Purpose of classification

2 - Material Characterisation

Address of the waste

Coleg Sir Gar Post Code N/A

SIC for the process giving rise to the waste

41201 Construction of commercial buildings

Description of industry/producer giving rise to the waste

School redevelopment which includes demolition and newbuild.

Description of the specific process, sub-process and/or activity that created the waste

Excavation of foundations, earthworks for level development platform.

Description of the waste

Mixed but generally glacial till comprising sandy gravelly cobbly CLAY.

Job summary

#	Sample name	Depth [m]	Classification Result	Hazard properties	Page
1	SA201-13/08/2024-0.10	0.10-0.20	Non Hazardous		3
2	SA202-13/08/2024-0.20	0.20-0.30	Non Hazardous		6
3	SA205-13/08/2024-0.10	0.10-0.20	Non Hazardous		9
4	SA206-13/08/2024-0.05	0.05-0.10	Non Hazardous		13
5	WS101-14/08/2024-0.20	0.20-0.30	Non Hazardous		16
6	WS103-14/08/2024-0.05	0.05-0.15	Non Hazardous		19
7	WS104-14/08/2024-0.10	0.10-0.20	Non Hazardous		22
8	WS105-14/08/2024-0.40	0.40-0.50	Non Hazardous		25
9	WS107-14/08/2024-0.10		Non Hazardous		28
10	WS109-14/08/2024-0.40	0.40-0.50	Non Hazardous		32
11	TP104-14/08/2024-0.10		Non Hazardous		35
12	HDP2-23/09/2024-0.10		Non Hazardous		39

Related documents

#	Name	Description
1	HWOL_24-27162-20240906 100127.batch	Eurofins Chemtest .batch file used to populate the Job
2	HWOL_24-27162-20240906 100127.hwol	Eurofins Chemtest .hwol file used to populate the Job
3	HWOL_24-30803-20241004 172830.hwol	Eurofins Chemtest .hwol file used to populate the Job
4	Example waste stream template for contaminated soils	waste stream template used to create this Job

Report

Created by: Matthew Kent Created date: 07 Oct 2024 15:25 GMT

Appendices	Page
Appendix A: Classifier defined and non GB MCL determinands	42
Appendix B: Rationale for selection of metal species	44
Appendix C: Version	45

Page 2 of 45 AJ00E-18Q54-MJNRS www.hazwasteonline.com

Classification of sample: SA201-13/08/2024-0.10

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

 Sample name:
 LoW Code:

 SA201-13/08/2024-0.10
 Chapter:

 Sample Depth:
 Entry:

Moisture content:

20%

(wet weight correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 20% Wet Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	*	antimony { antimon 051-005-00-X	ny trioxide } 215-175-0	1309-64-4		3.4	mg/kg	1.197	3.256	mg/kg	0.000326 %	✓	
2	₽	arsenic { <mark>arsenic tri</mark> 033-003-00-0	<mark>ioxide</mark> } 215-481-4	1327-53-3		53	mg/kg	1.32	55.982	mg/kg	0.0056 %	✓	
3	*	boron { <mark>diboron trio</mark> 005-008-00-8	<mark>xide</mark> } 215-125-8	1303-86-2		0.82	mg/kg	3.22	2.112	mg/kg	0.000211 %	✓	
4	4	cadmium { <mark>cadmiur</mark> 048-002-00-0	<mark>m oxide</mark> } 215-146-2	1306-19-0		0.35	mg/kg	1.142	0.32	mg/kg	0.000032 %	✓	
5	₽	chromium in chrom		ds { • 1308-38-9		21	mg/kg	1.462	24.554	mg/kg	0.00246 %	√	
6	4	chromium in chromoxide }	nium(VI) compound	ds { chromium(VI)		<0.5	mg/kg	1.923	<0.962	mg/kg	<0.0000962 %		<lod< td=""></lod<>
7	4	copper { dicopper o	215-607-8 oxide; copper (I) ox 215-270-7	1333-82-0 kide		70	mg/kg	1.126	63.05	mg/kg	0.0063 %	✓	
8	4	lead {	oounds with the ex		1	92	mg/kg		73.6	mg/kg	0.00736 %	√	
9	4	082-001-00-6 mercury { mercury 080-010-00-X	dichloride }	7487-94-7		0.35	mg/kg	1.353	0.379	mg/kg	0.0000379 %	√	
10	₽		222-068-2 [1] 240-408-8 [2] 265-748-4 [3] 235-715-9 [4]	3333-67-3 [1] 16337-84-1 [2] 65405-96-1 [3] 12607-70-4 [4]		36	mg/kg	2.022	58.245	mg/kg	0.00582 %	✓	
11	*	selenium { seleniur cadmium sulphose elsewhere in this A	lenide and those s			3.7	mg/kg	1.405	4.159	mg/kg	0.000416 %	√	
12	4	034-002-00-8 zinc { zinc oxide } 030-013-00-7	215-222-5	1314-13-2		120	mg/kg	1.245	119.493	mg/kg	0.0119 %	✓	
13	4	vanadium { divanadi pentoxide }				32	mg/kg	1.785	45.701	mg/kg	0.00457 %	√	

HazWasteOnline[™] Report created by Matthew Kent on 07 Oct 2024

	<u> </u>				Τ								
#		Determinand CAS Number			CLP Note	User entered data		Conv. Factor	Compound conc.		Classification value	MC Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	S							MC	
14	0	TPH (C6 to C40) p	etroleum group	TPH	-	36	mg/kg		28.8	mg/kg	0.00288 %	✓	
		tert-butyl methyl etl	hor: MTRE:	11111	+								
15		2-methoxy-2-methy				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		603-181-00-X	216-653-1	1634-04-4			_						
16		benzene 601-020-00-8	000 752 7	71-43-2		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		toluene	200-753-7	/ 1-43-2									
17			203-625-9	108-88-3		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
18	0	ethylbenzene 601-023-00-4	202-849-4	100-41-4	-	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		xylene	202-043-4	100-41-4	t								
19		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.002	mg/kg		<0.002	mg/kg	<0.0000002 %		<lod< td=""></lod<>
20	*	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }				<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
21	0	006-007-00-5 pH				9.3	рН		9.3	pН	9.3 pH		
		naphthalene		PH			<u> </u>				•		
22		· .	202-049-5	91-20-3	1	0.62	mg/kg		0.496	mg/kg	0.0000496 %	✓	
23	0	acenaphthylene	205-917-1	208-96-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
24	0	acenaphthene	201-469-6	83-32-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
25	0	fluorene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
26	0	phenanthrene	201-695-5	86-73-7		0.68	mg/kg		0.544	mg/kg	0.0000544 %	 ✓	
20			201-581-5	85-01-8	1	0.00			0.544	ilig/kg	0.0000344 /8	~	
27	Θ	anthracene	204-371-1	120-12-7		0.21	mg/kg		0.168	mg/kg	0.0000168 %	✓	
28	Θ	fluoranthene	205-912-4	206-44-0	-	1	mg/kg		0.8	mg/kg	0.00008 %	✓	
29	0	pyrene	204-927-3	129-00-0		0.76	mg/kg		0.608	mg/kg	0.0000608 %	✓	
30		benzo[a]anthracen	e			0.46	mg/kg		0.368	mg/kg	0.0000368 %	√	
31		chrysene	200-280-6	56-55-3		0.49	mg/kg		0.392	mg/kg	0.0000392 %	√	
32		benzo[b]fluoranthe	205-923-4 ne	218-01-9		0.64	mg/kg		0.512	mg/kg	0.0000512 %	√	
		601-034-00-4 benzo[k]fluoranthei	205-911-9 ne	205-99-2	-								
33		601-036-00-5 205-916-6 207-08-9 benzo[a]pyrene; benzo[def]chrysene				0.2	mg/kg		0.16	mg/kg	0.000016 %	✓	
34			enzo[def]chrysene 200-028-5	50-32-8		0.47	mg/kg		0.376	mg/kg	0.0000376 %	✓	
35	0	indeno[123-cd]pyre	ene 205-893-2	193-39-5		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
36		dibenz[a,h]anthrace	ene			<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	0	601-041-00-2 benzo[ghi]perylene	200-181-8	53-70-3	+								
37			205-883-8	191-24-2		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
38	0	monohydric phenol	s	P1186		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
									Total:	0.0487 %			

Page 4 of 45 AJ00E-18Q54-MJNRS www.hazwasteonline.com

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

₫ <LOD Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous Property to non-hazardous for cumulative determinand results below the threshold of: 500 mg/kg (0.05%) because: It is highly unlikely that soils (generally a refractory matrix) will be classified as flammable at concentrations of 1.00% or less. (AGS, 2019). This property is thus disregarded as potentially flammable.

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.00288%)

Classification of sample: SA202-13/08/2024-0.20

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code: SA202-13/08/2024-0.20 Chapter: Sample Depth:

0.20-0.30 m Entry:

Moisture content:

(wet weight correction)

15%

17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05

03)

Hazard properties

None identified

Determinands

Moisture content: 15% Wet Weight Moisture Correction applied (MC)

#					Note	Liser entered data		Conv.	Compound conc.		Classification value	Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP							MC	
1	_	antimony { antimor				<2	mg/kg	1.197	<2.394	mg/kg	<0.000239 %		<lod< th=""></lod<>
	\vdash		215-175-0	1309-64-4	-							Н	
2	4	arsenic { arsenic tr 033-003-00-0	10xide 215-481-4	1327-53-3	-	12	mg/kg	1.32	13.467	mg/kg	0.00135 %	✓	
3	4	boron { diboron tric	•			0.58	mg/kg	3.22	1.587	mg/kg	0.000159 %	1	
	-	005-008-00-8 215-125-8 1303-86-2											
4	4	<u> </u>				0.2 mg/kg	1.142	0.194	mg/kg	0.0000194 %	✓		
		048-002-00-0	215-146-2	1306-19-0	-								
5	4	chromium in chromium(III) compounds { Chromium(III) oxide (worst case) }				13	mg/kg	1.462	16.15	mg/kg	0.00162 %	✓	
			215-160-9	1308-38-9									
6	4	chromium in chromoxide }	. , .			<0.5	mg/kg	1.923	<0.962	mg/kg	<0.0000962 %		<lod< td=""></lod<>
		024-001-00-0 215-607-8 1333-82-0			_								
7	-	copper { dicopper oxide; copper (I) oxide }			-	31	mg/kg	1.126	29.667 mg/kg	0.00297 %	✓		
-	+	029-002-00-X	215-270-7	1317-39-1	\vdash								
8	4	lead {		ception of those	1	51	mg/kg		43.35	mg/kg	0.00434 %	✓	
	-	082-001-00-6											
9	-	mercury { mercury dichloride }				0.09	mg/kg	1.353	0.104	mg/kg	0.0000104 %	1	
	-		231-299-8	7487-94-7								ľ	
	-	nickel { nickel(II) carbonate }											
10		028-010-00-0	222-068-2 [1] 240-408-8 [2] 265-748-4 [3] 235-715-9 [4]	3333-67-3 [1] 16337-84-1 [2] 65405-96-1 [3] 12607-70-4 [4]		20	mg/kg	2.022	34.381	mg/kg	0.00344 %	✓	
11	4	selenium { selenium cadmium sulphose elsewhere in this A	lenide and those s			0.47	mg/kg	1.405	0.561	mg/kg	0.0000561 %	√	
	-	034-002-00-8			-								
12	_	zinc { zinc oxide }	215-222-5	1314-13-2	-	120	mg/kg	1.245	126.961	mg/kg	0.0127 %	✓	
13	4	vanadium { divanade pentoxide }	dium pentaoxide; v	vanadium vanadium		25	mg/kg	1.785	37.935	mg/kg	0.00379 %	√	
		023-001-00-8	215-239-8	1314-62-1	1		5 5			5 5			

#		Determinand		Note	User entered data		Conv.	Compound conc.		Classification value	MC Applied	Conc. Not Used	
		EU CLP index number	EC Number	CAS Number	CLP			1 actor			value	MC,	Oseu
14	Θ	TPH (C6 to C40) p	etroleum group	ТРН	-	38	mg/kg		32.3	mg/kg	0.00323 %	✓	
15		tert-butyl methyl et 2-methoxy-2-methy 603-181-00-X		1634-04-4		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< th=""></lod<>
16		benzene 601-020-00-8	200-753-7	71-43-2		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
17		toluene 601-021-00-3	203-625-9	108-88-3		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< th=""></lod<>
18	0	ethylbenzene 601-023-00-4	202-849-4	100-41-4		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
19		xylene 601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.002	mg/kg		<0.002	mg/kg	<0.0000002 %		<lod< th=""></lod<>
20	₫,	cyanides { salts exception of completerricyanides and respectified elsewhere	lex cyanides such a nercuric oxycyanid	as ferrocyanides,		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< th=""></lod<>
21		naphthalene 601-052-00-2	202-049-5	91-20-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
22	0	acenaphthylene	205-917-1	208-96-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
23	0	acenaphthene	201-469-6	83-32-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
24	0	fluorene	201-695-5	86-73-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
25	0	phenanthrene	201-581-5	85-01-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
26	0	anthracene	204-371-1	120-12-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
27	0	fluoranthene	205-912-4	206-44-0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
28	0	pyrene	204-927-3	129-00-0	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
29		benzo[a]anthracen 601-033-00-9	e 200-280-6	56-55-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
30		chrysene 601-048-00-0	205-923-4	218-01-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
31		benzo[b]fluoranthe 601-034-00-4	ne 205-911-9	205-99-2		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
32		benzo[k]fluoranthe 601-036-00-5	ne 205-916-6	207-08-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
33		benzo[a]pyrene; be	enzo[def]chrysene 200-028-5	50-32-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
34	0	indeno[123-cd]pyre	ene 205-893-2	193-39-5		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
35		dibenz[a,h]anthrac 601-041-00-2	ene 200-181-8	53-70-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
36	Θ	benzo[ghi]perylene	205-883-8	191-24-2		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
37	0	monohydric pheno	ls	P1186		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
										Total:	0.0343 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

<LOD Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous Property to non-hazardous for cumulative determinand results below the threshold of: 500 mg/kg (0.05%) because: It is highly unlikely that soils (generally a refractory matrix) will be classified as flammable at concentrations of 1.00% or less. (AGS, 2019). This property is thus disregarded as potentially flammable.

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.00323%)

Page 8 of 45 AJ00E-18Q54-MJNRS www.hazwasteonline.com

Classification of sample: SA205-13/08/2024-0.10

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Moisture content:

21%

Sample name: LoW Code: SA205-13/08/2024-0.10 Chapter: Sample Depth: 0.10-0.20 m

Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

(wet weight correction) **Hazard properties**

None identified

Determinands

Moisture content: 21% Wet Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	4	antimony { antimor	ny trioxide }	1309-64-4		<2	mg/kg	1.197	<2.394	mg/kg	<0.000239 %		<lod< th=""></lod<>
2	4	arsenic { arsenic tr		1327-53-3		11	mg/kg	1.32	11.474	mg/kg	0.00115 %	✓	
3	4	boron { diboron tric 005-008-00-8	oxide }	1303-86-2		0.45	mg/kg	3.22	1.145	mg/kg	0.000114 %	✓	
4	4	cadmium { <mark>cadmiu</mark> 048-002-00-0	m oxide }	1306-19-0		<0.1	mg/kg	1.142	<0.114	mg/kg	<0.0000114 %		<lod< td=""></lod<>
5	4	chromium in chron chromium(III) oxide				18	mg/kg	1.462	20.783	mg/kg	0.00208 %	√	
6	4	chromium in chron oxide }	215-160-9 nium(VI) compound	1308-38-9 ds {		<0.5	mg/kg	1.923	<0.962	mg/kg	<0.0000962 %		<lod< th=""></lod<>
7	4		oxide; copper (I) ox 215-270-7			11	mg/kg	1.126	9.784	mg/kg	0.000978 %	√	
8	4	lead { lead compospecified elsewher		ception of those	1	32	mg/kg		25.28	mg/kg	0.00253 %	√	
9	4	mercury { mercury 080-010-00-X	dichloride } 231-299-8	7487-94-7		0.09	mg/kg	1.353	0.0962	mg/kg	0.00000962 %	√	
10	4	nickel { nickel(II) ca 028-010-00-0	222-068-2 [1] 240-408-8 [2] 265-748-4 [3] 235-715-9 [4]	3333-67-3 [1] 16337-84-1 [2] 65405-96-1 [3] 12607-70-4 [4]		11	mg/kg	2.022	17.575	mg/kg	0.00176 %	✓	
11	4		m compounds with elenide and those s Annex }			0.47	mg/kg	1.405	0.522	mg/kg	0.0000522 %	✓	
12	æ		215-222-5	1314-13-2		49	mg/kg	1.245	48.183	mg/kg	0.00482 %	√	
13	4		dium pentaoxide; v 215-239-8	1 -		24	mg/kg	1.785	33.847	mg/kg	0.00338 %	√	

602-045-00-7

200-024-3

50-29-3

HazWasteOnline[™] Report created by Matthew Kent on 07 Oct 2024

Determinand Classification Conc. Not Conv. # User entered data Compound conc. Factor value Used EU CLP index EC Number CAS Number Š number TPH (C6 to C40) petroleum group 14 mg/kg 27.65 mg/kg 0.00276 % TPH tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane 15 <0.001 ma/ka <0.001 ma/ka <0.0000001 % <LOD 603-181-00-X 216-653-1 1634-04-4 benzene 16 < 0.001 < 0.001 mg/kg <0.0000001 % <LOD mg/kg 601-020-00-8 200-753-7 71-43-2 toluene 17 <0.001 mg/kg < 0.001 <0.0000001 % <LOD ma/ka 601-021-00-3 203-625-9 108-88-3 ethylbenzene 18 <0.001 < 0.001 <0.0000001 % <LOD mg/kg mg/kg 601-023-00-4 202-849-4 100-41-4 xylene 601-022-00-9 202-422-2 [1] 95-47-6 [1] 19 <0.002 < 0.002 <0.0000002 % <LOD 203-396-5 [2] 106-42-3 [2] ma/ka ma/ka 203-576-3 [3] 108-38-3 [3] 215-535-7 [4] 1330-20-7 [4] 💰 cyanides { 🍳 <mark>salts of hydrogen cyanide with the</mark> exception of complex cyanides such as ferrocyanides, 1.884 <LOD 20 < 0.942 <0.0000942 % ferricyanides and mercuric oxycyanide and those < 0.5 mg/kg mg/kg specified elsewhere in this Annex } 006-007-00-5 рΗ 21 9.2 pH 9.2 Ha 9.2 pН РΗ naphthalene 22 mg/kg 0.0000537 % 0.68 0.537 mg/kg 601-052-00-2 202-049-5 91-20-3 acenaphthylene 23 <0.1 mg/kg <0.1 mg/kg <0.00001 % <LOD 205-917-1 208-96-8 acenaphthene 24 <0.1 mg/kg <0.1 mg/kg <0.00001 % <LOD 201-469-6 83-32-9 fluorene 25 <LOD < 0.00001 % < 0.1 mg/kg < 0.1 mg/kg 201-695-5 86-73-7 phenanthrene 26 0.103 0.0000103 % 0.13 mg/kg mg/kg 201-581-5 85-01-8 anthracene 27 <LOD <0.1 mg/kg < 0.1 mg/kg <0.00001 % 204-371-1 120-12-7 fluoranthene 28 0.13 mg/kg 0.103 mg/kg 0.0000103 % 205-912-4 206-44-0 pyrene 29 0.11 mg/kg 0.0869 mg/kg 0.00000869 % 204-927-3 129-00-0 benzo[a]anthracene 30 <LOD <0.00001 % < 0.1 mg/kg < 0.1 ma/ka 601-033-00-9 200-280-6 56-55-3 chrysene 31 <0.1 <0.1 <0.00001 % <LOD ma/ka ma/ka 601-048-00-0 205-923-4 218-01-9 benzo[b]fluoranthene 32 <0.1 <0.1 <0.00001 % <LOD mg/kg mg/kg 601-034-00-4 205-911-9 205-99-2 benzo[k]fluoranthene 33 < 0.1 mg/kg < 0.1 mg/kg < 0.00001 % <LOD 601-036-00-5 205-916-6 207-08-9 benzo[a]pyrene; benzo[def]chrysene <LOD 34 < 0.1 ma/ka < 0.1 mg/kg <0.00001 % 50-32-8 601-032-00-3 200-028-5 indeno[123-cd]pyrene 35 <0.1 mg/kg <0.1 <0.00001 % <LOD ma/ka 205-893-2 193-39-5 dibenz[a,h]anthracene 36 <0.1 <0.1 <0.00001 % <LOD mg/kg mg/kg 601-041-00-2 200-181-8 53-70-3 benzo[ghi]perylene 37 <0.1 mg/kg <0.1 mg/kg <0.00001 % <LOD 205-883-8 191-24-2 DDT (ISO); clofenotane (INN); dicophane; 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane; 38 <LOD <0.00002 % < 0.2 mg/kg < 0.2 mg/kg dichlorodiphenyltrichloroethane

Page 10 of 45 AJ00E-18Q54-MJNRS www.hazwasteonline.com

			9		Т							
#			Determinand		CLP Note	User entered data	Conv. Factor	Compound	d conc.	Classification value	MC Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLF						MC	
39		chlordane (ISO); 1,2,4,5,6,7,8,8-octa methanoindan				<0.4 mg/kg		<0.4	mg/kg	<0.00004 %		<lod< td=""></lod<>
		602-047-00-8	200-349-0	57-74-9	-			<u> </u>				
40		hexachlorocyclohe 602-043-00-6	210-168-9, 200-401-2, 206-270-8, 206-271-3	58-89-9, 319-84-6, 319-85-7, 608-73-1	_	<0.8 mg/kg		<0.8	mg/kg	<0.00008 %		<lod< td=""></lod<>
-		dieldrin (ISO)	200-271-3	000-73-1	H							
41		602-049-00-9	200-484-5	60-57-1	1	<0.2 mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
42		endrin (ISO); 1,2,3,4,10,10-hexa octahydro-1,4:5,8-c	dimethanonaphtha	lene		<0.6 mg/kg		<0.6	mg/kg	<0.00006 %		<lod< td=""></lod<>
		602-051-00-X	200-775-7	72-20-8	-							
43		heptachlor (ISO); 1,4,5,6,7,8,8-hepta methanoindene 602-046-00-2	achloro-3a,4,7,7a-te	etrahydro-4,7-		<0.2 mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
44		aldrin (ISO) 602-048-00-3	206-215-8	309-00-2		<0.2 mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
45	0	monohydric pheno	1	,	\dagger	<0.1 mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		(100): 0.0)	P1186	-							
46		phorate (ISO); O,O phosphorodithioate	•			<0.2 mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
		015-033-00-6	206-052-2	298-02-2	╁							
47		demeton-S (ISO); ophosphorothioate				<0.2 mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
		015-029-00-4 disulfoton (ISO); O	204-801-8	126-75-0	-							
48		phosphorodithioate		298-04-4		<0.2 mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
49		fenthion (ISO); O,C phosphorothioate	D-dimethyl-O-(4-me	ethylthion-m-tolyl)		<0.2 mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
		015-048-00-8 trichloronate (ISO)	200-231-9	55-38-9								
50		ethylphosphonothio		327-98-0		<0.2 mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
51		azinphos-methyl (II O,O-dimethyl-4-oxo phosphorodithioate	SO); obenzotriazin-3-yln	nethyl		<0.2 mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
_		<u> </u>	201-676-1	86-50-0	+							
52		coumaphos (ISO); O,O-diethyl phosph 015-038-00-3			-	<0.2 mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
53		simazine (ISO); 6-chloro-N,N'-dieth 612-088-00-3		1		<0.2 mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
54		atrazine (ISO); 2-chloro-4-ethylam	ine-6-isopropylami	ne-1,3,5-triazine		<0.2 mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
55		propazine (ISO); 2-chloro-4,6-bis(iso				<0.2 mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
56		terbuthylazine (ISC N¢-ethyl-1,3,5-triaz		139-40-2 Noro-	+	<0.2 mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
		+	227-637-9	5915-41-3	1							
57		secbumeton (ISO); 2-sec-butylamino-2 triazine	4-ethylamino-6-met			<0.2 mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
_		613-063-00-X	247-554-1	26259-45-0	\vdash							
58		simetryn (ISO); 2,4-bis(ethylamino) 613-065-00-0				<0.2 mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
1	1	0-005-00-0	213-801-7	1014-70-6	1							

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	l data	Conv. Factor	Compound	d conc.	Classification value	MC Applied	Conc. Not Used
59		ametryn (ISO); N-ethyl-N'-isopropy triazine-2,4-diamin		3,5-		<0.2	mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
		613-010-00-0	212-634-7	834-12-8									
60		heptachlor epoxide 2,3-epoxy-1,4,5,6,7 tetrahydro-4,7-met	7,8,8-heptachloro-	3a,4,7,7a-		<0.2	mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
		602-063-00-5	213-831-0	1024-57-3	İ								
61	0	p,p'-DDE				<0.2	mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
0 '			200-784-6	72-55-9		\\0.2	mg/kg		\0.2	mg/kg	<0.00002 /0		LOD
62	0	p,p'-DDD				<0.2	mg/kg		<0.2	ma/ka	<0.00002 %		<lod< td=""></lod<>
02			200-783-0	72-54-8	1	<0.2	mg/kg		<0.2	mg/kg	<0.00002 %		<lud< td=""></lud<>
63	0	p,p'-methoxychlor				<0.2			<0.2	m a/l.a	<0.00002 %		<lod< td=""></lod<>
03			200-779-9	72-43-5	1	<0.2	mg/kg		<0.2	mg/kg	<0.00002 %	Ш	<lud< td=""></lud<>
64		endosulfan (ISO); 1,2,3,4,7,7-hexach ylenedimethylene s 1,4,5,6,7,7-hexach ylenedimethylene s 602-052-00-5	sulfite; loro-8,9,10-trinorb			<0.6	mg/kg		<0.6	mg/kg	<0.00006 %		<lod< td=""></lod<>
\vdash		002-002-00-5	204-079-4	110-29-7						Total:	0.021 %	Н	
										iolai.	0.021/0		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

<LOD Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous Property to non-hazardous for cumulative determinand results below the threshold of: 500 mg/kg (0.05%) because: It is highly unlikely that soils (generally a refractory matrix) will be classified as flammable at concentrations of 1.00% or less. (AGS, 2019). This property is thus disregarded as potentially flammable.

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.00276%)

Page 12 of 45 AJ00E-18Q54-MJNRS www.hazwasteonline.com

Classification of sample: SA206-13/08/2024-0.05

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

 Sample name:
 LoW Code:

 SA206-13/08/2024-0.05
 Chapter:

 Sample Depth:
 Entry:

Moisture content:

29%

(wet weight correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 29% Wet Weight Moisture Correction applied (MC)

_	_				_							_	
#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	æ	antimony { antimor	ny trioxide }			<2		1.197	<2.394	m m/l m	-0.000330.0/		<lod< th=""></lod<>
'			215-175-0	1309-64-4		<2	mg/kg	1.197	<2.394	mg/kg	<0.000239 %		<lud< th=""></lud<>
2	æ	arsenic { arsenic tr	ioxide }			9.4	mg/kg	1.32	8.812	mg/kg	0.000881 %	√	
	ľ	033-003-00-0	215-481-4	1327-53-3		3.4	ilig/kg	1.32	0.012	ilig/kg	0.00081 /8	V	
3	æ	boron { diboron tric	oxide }			<0.4	mg/kg	3.22	<1.288	mg/kg	<0.000129 %		<lod< th=""></lod<>
٦	•	005-008-00-8	215-125-8	1303-86-2	1	VO.4	ilig/kg	3.22	<1.200	ilig/kg	<0.000129 /6		\LOD
4	æ	cadmium { cadmiu	<mark>m oxide</mark> }			0.15	mg/kg	1.142	0.122	mg/kg	0.0000122 %	✓	
*	•	048-002-00-0	215-146-2	1306-19-0	1	0.13	ilig/kg	1.142	0.122	ilig/kg	0.0000122 /6	~	
5	4	chromium in chrom		ds { • 1308-38-9		14	mg/kg	1.462	14.528	mg/kg	0.00145 %	√	
	_	-b											
6	4	chromium in chromoxide }				<0.5	mg/kg	1.923	<0.962	mg/kg	<0.0000962 %		<lod< th=""></lod<>
	-	024-001-00-0	215-607-8	1333-82-0								H	
7	æ	copper { dicopper o				15	mg/kg	1.126	11.991	mg/kg	0.0012 %	✓	
	-	029-002-00-X	215-270-7	1317-39-1	-							H	
8	4	lead {		ception of those	1	43	mg/kg		30.53	mg/kg	0.00305 %	✓	
		082-001-00-6											
9	4	mercury { mercury	dichloride }			0.06	mg/kg	1.353	0.0577	mg/kg	0.00000577 %	J	
		080-010-00-X	231-299-8	7487-94-7								•	
	4	nickel { nickel(II) ca	arbonate }										
10		028-010-00-0	222-068-2 [1] 240-408-8 [2] 265-748-4 [3] 235-715-9 [4]	3333-67-3 [1] 16337-84-1 [2] 65405-96-1 [3] 12607-70-4 [4]		11	mg/kg	2.022	15.795	mg/kg	0.00158 %	✓	
11	4	selenium { selenium cadmium sulphose elsewhere in this A	lenide and those s			<0.25	mg/kg	1.405	<0.351	mg/kg	<0.0000351 %		<lod< th=""></lod<>
	-	034-002-00-8			+							H	
12	e 4	zinc { zinc oxide }	h45 222 5	4244422	-	83	mg/kg	1.245	73.351	mg/kg	0.00734 %	✓	
-	-	030-013-00-7	215-222-5	1314-13-2	+							H	
13	«	vanadium { divanadi pentoxide }	,			18	mg/kg	1.785	22.815	mg/kg	0.00228 %	✓	
		023-001-00-8	215-239-8	1314-62-1									

$\overline{}$					T							$\overline{}$	
#		FILCUS	Determinand	0.000	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	S							MC	
14	0	TPH (C6 to C40) p	etroleum group	TPH	-	15	mg/kg		10.65	mg/kg	0.00107 %	✓	
		tert-butyl methyl etl	hor: MTRE:	11111	+								
15		2-methoxy-2-methy				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		603-181-00-X	216-653-1	1634-04-4									
16		benzene 601-020-00-8	000 752 7	71-43-2		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
<u></u>		toluene	200-753-7	71-43-2									
17		601-021-00-3	203-625-9	108-88-3		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
18	0	ethylbenzene 601-023-00-4	202-849-4	100-41-4		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		xylene	202 043 4	100 41 4	T								
19		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.002	mg/kg		<0.002	mg/kg	<0.0000002 %		<lod< td=""></lod<>
20	4	cyanides { salts exception of completerricyanides and no specified elsewhere	ex cyanides such a nercuric oxycyanid	as ferrocyanides,		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
-		006-007-00-5 pH			+								
21		F		PH		9.1	pН		9.1	pН	9.1 pH		
22		naphthalene 601-052-00-2	202-049-5	91-20-3	-	0.48	mg/kg		0.341	mg/kg	0.0000341 %	✓	
23	0	acenaphthylene		,		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		1	205-917-1	208-96-8	+								
24	0	acenaphthene	201-469-6	83-32-9	+	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
25	0	fluorene	201-695-5	86-73-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
26	0	phenanthrene	201-095-5	00-73-7		0.23	mg/kg		0.163	mg/kg	0.0000163 %	✓	
		anthracene	201-581-5	85-01-8	-								
27	Ĭ		204-371-1	120-12-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
28	0	fluoranthene	205-912-4	206-44-0	-	0.55	mg/kg		0.391	mg/kg	0.0000391 %	✓	
29	0	pyrene		400.00.0		0.58	mg/kg		0.412	mg/kg	0.0000412 %	√	
		benzo[a]anthracen	204-927-3 e	129-00-0	+	0.00	C		0.10=	"	0.0000407.5		
30		601-033-00-9	200-280-6	56-55-3		0.26	mg/kg		0.185	mg/kg	0.0000185 %	✓	
31		chrysene 601-048-00-0	205-923-4	218-01-9	-	0.27	mg/kg		0.192	mg/kg	0.0000192 %	✓	
32		benzo[b]fluoranthe		005.00.0		2.3	mg/kg		1.633	mg/kg	0.000163 %	√	
33		601-034-00-4 benzo[k]fluoranther	205-911-9 ne	205-99-2		0.63	ma/ka		0.447	ma/ka	0.0000447.9/	,	
33		1	205-916-6	207-08-9	1	0.63	mg/kg		U. 44 7	mg/kg	0.0000447 %	✓	
34		benzo[a]pyrene; be 601-032-00-3	enzo[def]chrysene 200-028-5	50-32-8		2.2	mg/kg		1.562	mg/kg	0.000156 %	✓	
35	0	indeno[123-cd]pyre		102 20 5		2.1	mg/kg		1.491	mg/kg	0.000149 %	√	
36		dibenz[a,h]anthrac	205-893-2 ene	193-39-5		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		1	200-181-8	53-70-3	1	VU.1	mg/kg		ζυ.1	mg/kg	VO.00001 /0		_UD
37	0	benzo[ghi]perylene	205-883-8	191-24-2	-	2.2	mg/kg		1.562	mg/kg	0.000156 %	✓	
38	0	monohydric phenol		,		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	_			P1186						Total:	0.0204 %		
\Box										ıvıal.	0.0207 /0		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

₫ <LOD Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous Property to non-hazardous for cumulative determinand results below the threshold of: 500 mg/kg (0.05%) because: It is highly unlikely that soils (generally a refractory matrix) will be classified as flammable at concentrations of 1.00% or less. (AGS, 2019). This property is thus disregarded as potentially flammable.

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.00107%)

17: Construction and Demolition Wastes (including excavated soil

17 05 04 (Soil and stones other than those mentioned in 17 05

from contaminated sites)

03)

Classification of sample: WS101-14/08/2024-0.20

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code: WS101-14/08/2024-0.20 Chapter:

Sample Depth:

0.20-0.30 m Entry:

Moisture content:

21%

(wet weight correction)

Hazard properties

None identified

Determinands

Moisture content: 21% Wet Weight Moisture Correction applied (MC)

#			Determinand		Note	User entered	l data	Conv. Factor	Compound	conc.	Classification value	Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP			racioi			value	MC/	Used
1	4	antimony { antimon	y trioxide }			<2	mg/kg	1.197	<2.394	mg/kg	<0.000239 %		<lod< th=""></lod<>
Ŀ		051-005-00-X	215-175-0	1309-64-4		``		1.107	12.001	9/1.9	40.000200 70		100
2	4	arsenic { arsenic tri	ioxide }			14	mg/kg	1.32	14.603	mg/kg	0.00146 %	1	
		033-003-00-0	215-481-4	1327-53-3								Ť	
3	æ\$	boron { diboron tric	•			<0.4	mg/kg	3.22	<1.288	mg/kg	<0.000129 %		<lod< td=""></lod<>
		005-008-00-8	215-125-8	1303-86-2		-	<u> </u>			3 3			
4	æ	cadmium {	•			<0.1	mg/kg	1.142	<0.114	mg/kg	<0.0000114 %		<lod< td=""></lod<>
		048-002-00-0	215-146-2	1306-19-0						3 3			
5	4	chromium in chrom		ds {		28	mg/kg	1.462	32.33	mg/kg	0.00323 %	✓	
			215-160-9	1308-38-9									
6	4	chromium in chromoxide }	. , ,	()		<0.5	mg/kg	1.923	<0.962	mg/kg	<0.0000962 %		<lod< td=""></lod<>
			215-607-8	1333-82-0	_								
7	4	copper { dicopper o				22	mg/kg	1.126	19.568	mg/kg	0.00196 %	✓	
		029-002-00-X	215-270-7	1317-39-1									
8	4	lead {		cception of those	1	50	mg/kg		39.5	mg/kg	0.00395 %	✓	
	-	082-001-00-6											
9	_	mercury { mercury				0.23	mg/kg	1.353	0.246	mg/kg	0.0000246 %	1	
	-		231-299-8	7487-94-7	_							-	
	-	nickel { nickel(II) ca											
10			222-068-2 [1] 240-408-8 [2] 265-748-4 [3] 235-715-9 [4]	3333-67-3 [1] 16337-84-1 [2] 65405-96-1 [3] 12607-70-4 [4]		17	mg/kg	2.022	27.161	mg/kg	0.00272 %	✓	
11	4	selenium { selenium cadmium sulphose elsewhere in this A	lenide and those			0.44	mg/kg	1.405	0.488	mg/kg	0.0000488 %	√	
_	-	034-002-00-8			\perp								
12	-	zinc { zinc oxide }				74	mg/kg	1.245	72.766	mg/kg	0.00728 %	√	
			215-222-5	1314-13-2	_							1	
13		vanadium { divanade pentoxide }	•			43	mg/kg	1.785	60.643	mg/kg	0.00606 %	✓	
		023-001-00-8	215-239-8	1314-62-1									

Page 16 of 45 AJ00E-18Q54-MJNRS www.hazwasteonline.com

Fig. CLP Indice EC Number CAS Numb						Т							-	
TPH (C6 to C40) petroleum group	#		FILCID index		CAC Number	P Note	User entere	d data		Compound	conc.		: Applied	Conc. Not Used
Test				EC Number	CAS Number	占							M	
15 Semethory-comethylogone 1634-04-4	14	Θ	TPH (C6 to C40) p	etroleum group	ТРН		17	mg/kg		13.43	mg/kg	0.00134 %	√	
15 2-methoxy2-methytypropane 303-181-100-X 716-851-1 1634-04-4 303-181-100-X 716-851-1 1634-04-4 303-181-100-X 716-851-1 1634-04-4 303-181-100-X 716-851-1 1634-04-4 301-020-00-1 301-02			tert-butvl methyl et	her: MTBE:									Н	
16	15						<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
10				216-653-1	1634-04-4								Ц	
17	16			b00-753-7	71-43-2		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
B	-			200-733-7	11-43-2		2 224						Н	
10 10 10 10 10 10 10 10	17		601-021-00-3	203-625-9	108-88-3	L	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
19	18	0	•	202-849-4	100-41-4		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
20	19		601-022-00-9	203-396-5 [2] 203-576-3 [3]	106-42-3 [2] 108-38-3 [3]		<0.002	mg/kg		<0.002	mg/kg	<0.0000002 %		<lod< td=""></lod<>
21	20	«	exception of compl ferricyanides and n specified elsewhere	ex cyanides such a nercuric oxycyanid	as ferrocyanides,		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
Description of the content of the	21	0		1	lou i		9	рН		9	рН	9pH		
601-052-00-2 202-049-5 91-20-3 3 3 acenaphthylene 205-917-1 208-96-8 -0.1 mg/kg -0.1 mg/kg -0.00001 % -1.00 -1.0	22		naphthalene		РН		0.42	ma/ka		0.333	ma/ka	0.0000333.9/	,	
24	22		601-052-00-2	202-049-5	91-20-3		0.42	mg/kg		0.332	ilig/kg	0.0000332 %	V	
24 a acenaphthene 201-469-6 83-32-9 -0.1 mg/kg -0.1 mg/kg -0.00001 % -1.000	23	9	. ,	bn5-917-1	208-96-8	Г	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
Early Earl	24	0	acenaphthene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
25		_		201-469-6	83-32-9	\vdash							Н	
201-581-5 85-01-8	25	9		201-695-5	86-73-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
20	26	0	•	201-581-5	85-01-8		0.13	mg/kg		0.103	mg/kg	0.0000103 %	✓	
28	27	0		204-371-1	120-12-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
29 pyrene 0.12 mg/kg 0.0948 mg/kg 0.00000948 % √ 30 benzo[a]anthracene 601-033-00-9 200-280-6 56-55-3 <0.1	28	0		205-912-4	206-44-0		0.12	mg/kg		0.0948	mg/kg	0.00000948 %	√	
Denzo[a]anthracene S01-033-00-9 200-280-6 56-55-3 S6-55-3 S6-55-	29	0	pyrene			T	0.12	mg/kg		0.0948	mg/kg	0.00000948 %	√	
601-033-00-9 200-280-6 56-55-3	30		benzo[a]anthracen	1	128-00-0	+	<0.1	ma/ka		<0.1	ma/ka	<0.00001 %	Н	<lod< td=""></lod<>
Solidario Soli				200-280-6	56-55-3	\vdash								
S2				1	218-01-9	1							Н	
33	32		601-034-00-4	205-911-9	205-99-2		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %	Ц	<lod< td=""></lod<>
benzo[a]pyrene; benzo[def]chrysene	33				207-08-9	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
35	34		benzo[a]pyrene; be	enzo[def]chrysene	1		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
205-893-2 193-39-5	35	0	indeno[123-cd]pyre	ene		_	<0.1	mg/ka		<0.1	mg/kg	<0.00001 %	H	<lod< td=""></lod<>
36				1	193-39-5	\vdash							Н	
38 monohydric phenols	36		• • •		53-70-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %	L	<lud< td=""></lud<>
38 monohydric phenols <0.1 mg/kg <0.00001 % <lod< td=""><td>37</td><td>0</td><td></td><td></td><td>191-24-2</td><td></td><td><0.1</td><td>mg/kg</td><td></td><td><0.1</td><td>mg/kg</td><td><0.00001 %</td><td></td><td><lod< td=""></lod<></td></lod<>	37	0			191-24-2		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	38	0		1	,	T	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			<u> </u>	1	1						Total:	0.0288 %	Г	

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

<LOD Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous Property to non-hazardous for cumulative determinand results below the threshold of: 500 mg/kg (0.05%) because: It is highly unlikely that soils (generally a refractory matrix) will be classified as flammable at concentrations of 1.00% or less. (AGS, 2019). This property is thus disregarded as potentially flammable.

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.00134%)

Page 18 of 45 AJ00E-18Q54-MJNRS www.hazwasteonline.com

Classification of sample: WS103-14/08/2024-0.05

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Moisture content:

21%

Sample name: LoW Code: WS103-14/08/2024-0.05 Chapter: Sample Depth: 0.05-0.15 m

Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

(wet weight correction) **Hazard properties**

None identified

Determinands

Moisture content: 21% Wet Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	æ å	antimony { antimor	ny trioxide }	1309-64-4		<2	mg/kg	1.197	<2.394	mg/kg	<0.000239 %		<lod< th=""></lod<>
2	æ\$	arsenic { arsenic tr		1327-53-3		9.7	mg/kg	1.32	10.118	mg/kg	0.00101 %	✓	
3	æ	boron { diboron tric 005-008-00-8	oxide }	1303-86-2		0.87	mg/kg	3.22	2.213	mg/kg	0.000221 %	√	
4	æ\$	cadmium { <mark>cadmiu</mark> 048-002-00-0	m oxide } 215-146-2	1306-19-0		<0.1	mg/kg	1.142	<0.114	mg/kg	<0.0000114 %		<lod< td=""></lod<>
5	4	chromium in chron				21	mg/kg	1.462	24.247	mg/kg	0.00242 %	√	
6	4	chromium in chronoxide }	215-160-9 nium(VI) compound	1308-38-9 ds {		<0.5	mg/kg	1.923	<0.962	mg/kg	<0.0000962 %		<lod< th=""></lod<>
7	4	copper { dicopper 029-002-00-X	1			24	mg/kg	1.126	21.347	mg/kg	0.00213 %	√	
8	4	lead { lead compose specified elsewher 082-001-00-6		ception of those	1	48	mg/kg		37.92	mg/kg	0.00379 %	√	
9	4	mercury { mercury 080-010-00-X	dichloride } 231-299-8	7487-94-7		0.1	mg/kg	1.353	0.107	mg/kg	0.0000107 %	√	
10	4	nickel { nickel(II) ca 028-010-00-0	222-068-2 [1] 240-408-8 [2] 265-748-4 [3] 235-715-9 [4]	3333-67-3 [1] 16337-84-1 [2] 65405-96-1 [3] 12607-70-4 [4]		13	mg/kg	2.022	20.77	mg/kg	0.00208 %	✓	
11	4		m compounds with elenide and those s Annex }			0.33	mg/kg	1.405	0.366	mg/kg	0.0000366 %	✓	
12	4	zinc { zinc oxide }	215-222-5	1314-13-2		51	mg/kg	1.245	50.15	mg/kg	0.00501 %	√	
13	4		dium pentaoxide; v	1 -		32	mg/kg	1.785	45.129	mg/kg	0.00451 %	√	

HazWasteOnline[™] Report created by Matthew Kent on 07 Oct 2024

Peter	П			D									þe	
1	#		FLLCL P index		CAS Number	P Note	User entere	d data		Compound	conc.		3 Appli	Conc. Not Used
				LO Number	O/10 Humber	ರ							Ĭ	
15 Semetaury-methylerines / LTDE; Semetaury-methylerines / L	14	0	TPH (C6 to C40) p	etroleum group	TOU		15	mg/kg		11.85	mg/kg	0.00119 %	1	
Second color Seco			tort butyl mothyl ot	hor: MTRE:	IPH	\vdash								
Box 18-100 X 216-655-1 1834-04-4	15						<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
15 501-020-00-8 200-783-7 71-43-2			603-181-00-X	216-653-1	1634-04-4									
Bot-1-020-00-8 Dio 7-037 P1-43-2	16						<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
10				200-753-7	71-43-2									
10	17			203-625-9	108-88-3		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
Sylvene S07-022-00-9 202-422-2[1] S5-47-6[1] 108-423-12 108	18		•	202-849-4	100-41-4	_	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
19						t								
Cyanides { * saits of hydrogen cyanides with the exception of complex cyanides and mercuric exception of complex exception of c	19			203-396-5 [2] 203-576-3 [3]	106-42-3 [2] 108-38-3 [3]		<0.002	mg/kg		<0.002	mg/kg	<0.0000002 %		<lod< td=""></lod<>
20		4	cvanides { salts	of hydrogen cyani	de with the									
Specified elsewhere in this Annex Specified elsewhere		exception of compl	ex cyanides such	as ferrocyanides,		-O.F		4 004	-0.040	nn ar/l+ar	-0.0000042.0/		1.00	
Differentiation Differenti	20				le and those		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lud< td=""></lud<>
PH			-	,		-								
PH	21	9	pН				9.1	nН		9.1	nH	9.1 nH		
Solidosciption Soli			naphthalene		PH			<u> </u>			· .			
23	22		· .	202-049-5	91-20-3	-	0.49	mg/kg		0.387	mg/kg	0.0000387 %	✓	
24 accessible 201-469-6 83-32-9	22	0	acenaphthylene				-0.1	ma/ka		-0.1	ma/ka	<0.00001 %		-I OD
201-469-6 83-32-9 201-469-6 83-32-9 201-469-6 83-32-9 201-695-5 86-73-7 201-695-5 86-73-7 201-695-5 86-73-7 201-695-5 86-73-7 201-695-5 86-73-7 201-695-5 85-01-8 201-695-5 85-01-8 201-695-5 85-01-8 201-695-5 85-01-8 201-695-5 85-01-8 201-695-5 85-01-8 201-695-5 201-695-	23			205-917-1	208-96-8		VO.1			70.1	mg/kg	<0.00001 78		LOD
The property of the property	24	0	· .	201-469-6	83-32-9	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
201-695-5 86-73-7	٥٢	0					0.4			0.4		0.00004.0/		1.00
201-581-5 85-01-8	25			201-695-5	86-73-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
27 a anthracene 201-581-5 85-01-8	26	0	<u>'</u>				0.24	mg/kg		0.19	mg/kg	0.000019 %	/	
20				201-581-5	85-01-8	-								
The property of the property	27	0		204-371-1	120-12-7	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
28				204 07 1 1	120 12 1									
Denzo[a]anthracene Denzo[a	28			205-912-4	206-44-0	1	0.28	mg/kg		0.221	mg/kg	0.0000221 %	√	
204-927-3 129-00-0	29	0	pyrene				0.28	ma/ka		0.221	ma/ka	0.0000221 %	./	
Signature Sign			1		129-00-0		0.20			U.EE 1		0.0000221 70	*	
Solidar Soli	30				56-55-3		0.16	mg/kg		0.126	mg/kg	0.0000126 %	✓	
benzo[b]fluoranthene	31		'	205-923-4	218-01-9		0.17	mg/kg		0.134	mg/kg	0.0000134 %	√	
32	00		-			\vdash	2 :	0		2.	C	0.00004.64		1.05
33	32				205-99-2	1	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
Solution 33			ne		İ	<0.1	ma/ka		<0.1	ma/ka	<0.00001 %		<lod< td=""></lod<>	
34					-	1					9			
205-893-2 193-39-5 20.1 mg/kg 20.00001 % 205-893-2 193-39-5 20.1 mg/kg 20.00001 % 205-893-2 193-39-5 20.1 mg/kg 20.00001 % 205-893-2 200-181-8 53-70-3 200-181-8 53-70-3 200-181-8 205-883-8 191-24-2 205-883-8 205-88	34						<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
dibenz[a,h]anthracene	35	0			103-30 5		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
37	H				1 30-03-0	+								_
benzo[ghi]perylene	36				53-70-3	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
205-883-8 191-24-2 38 monohydric phenols <0.1 mg/kg <0.00001 % <lod td="" <=""><td>37</td><td></td><td></td><td></td><td></td><td></td><td>-0.1</td><td>ma/ka</td><td></td><td>∠0.1</td><td>ma/ka</td><td><0.00001.9/</td><td></td><td><1.0D</td></lod>	37						-0.1	ma/ka		∠0.1	ma/ka	<0.00001.9/		<1.0D
38	31			205-883-8	191-24-2		VO. 1	mg/kg		VO. 1	mg/kg	Q.00001 76		\LUD
	38	•	monohydric phenol	ls	P1186		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			1	U.							Total:	0.0231 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

₫ <LOD Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous Property to non-hazardous for cumulative determinand results below the threshold of: 500 mg/kg (0.05%) because: It is highly unlikely that soils (generally a refractory matrix) will be classified as flammable at concentrations of 1.00% or less. (AGS, 2019). This property is thus disregarded as potentially flammable.

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.00119%)

17: Construction and Demolition Wastes (including excavated soil

17 05 04 (Soil and stones other than those mentioned in 17 05

from contaminated sites)

03)

Classification of sample: WS104-14/08/2024-0.10

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code: WS104-14/08/2024-0.10 Chapter: Sample Depth:

0.10-0.20 m Entry:

Moisture content:

24%

(wet weight correction)

Hazard properties

None identified

Determinands

Moisture content: 24% Wet Weight Moisture Correction applied (MC)

#			Determinand		Note	User entere	ed data	Conv.	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP			actor			value	MC	Oseu
1	_	antimony { antimon				<2	mg/kg	1.197	<2.394	mg/kg	<0.000239 %		<lod< th=""></lod<>
			215-175-0	1309-64-4	_								
2	e 🤻	arsenic { arsenic tri 033-003-00-0	i <mark>oxide</mark> } 215-481-4	1327-53-3	-	8.4	mg/kg	1.32	8.429	mg/kg	0.000843 %	✓	
	æ	boron { diboron tric							2.11-			١.	
3	_	005-008-00-8	215-125-8	1303-86-2	1	1	mg/kg	3.22	2.447	mg/kg	0.000245 %	✓	
4	æ	cadmium { cadmiui	<mark>m oxide</mark> }	,		-0.1	ma/ka	1 1 1 1 2	-0.114	ma/ka	-0.0000114.9/		<lod< td=""></lod<>
4	_	048-002-00-0	215-146-2	1306-19-0	1	<0.1	mg/kg	1.142	<0.114	mg/kg	<0.0000114 %		<lud< td=""></lud<>
5	4	chromium in chrom		ls {		19	mg/kg	1.462	21.105	mg/kg	0.00211 %	√	
			215-160-9	1308-38-9									
6	4	chromium in chromoxide }				<0.5	mg/kg	1.923	<0.962	mg/kg	<0.0000962 %		<lod< th=""></lod<>
			215-607-8	1333-82-0	-								
7	-	copper { dicopper of 029-002-00-X	215-270-7	1317-39-1	-	13	mg/kg	1.126	11.124	mg/kg	0.00111 %	✓	
8	4	lead {	oounds with the ex		1	32	mg/kg		24.32	mg/kg	0.00243 %	√	
		082-001-00-6			1								
9	ď	mercury { mercury	dichloride }			0.07	mg/kg	1.353	0.072	mg/kg	0.0000072 %	1	
Ľ		080-010-00-X	231-299-8	7487-94-7		0.07		1.000	0.072	mg/kg	0.0000072 70	~	
	4	nickel { nickel(II) ca	arbonate }										
10			222-068-2 [1] 240-408-8 [2] 265-748-4 [3] 235-715-9 [4]	3333-67-3 [1] 16337-84-1 [2] 65405-96-1 [3] 12607-70-4 [4]		11	mg/kg	2.022	16.907	mg/kg	0.00169 %	✓	
11	4	selenium { seleniur cadmium sulphose elsewhere in this A	lenide and those s			<0.25	mg/kg	1.405	<0.351	mg/kg	<0.0000351 %		<lod< th=""></lod<>
	\vdash	034-002-00-8			\vdash							H	
12	~	zinc { zinc oxide } 030-013-00-7	215-222-5	1314-13-2		50	mg/kg	1.245	47.299	mg/kg	0.00473 %	✓	
13		vanadium { divanade pentoxide }		ranadium 1314-62-1		30	mg/kg	1.785	40.702	mg/kg	0.00407 %	✓	

Page 22 of 45 AJ00E-18Q54-MJNRS www.hazwasteonline.com

#			Determinand		CLP Note	User entere	d data	Conv.	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP			ractor	-		value	MC /	Used
14	0	TPH (C6 to C40) p	etroleum group	ТРН		21	mg/kg		15.96	mg/kg	0.0016 %	√	
15		tert-butyl methyl etl 2-methoxy-2-methy 603-181-00-X		1634-04-4		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
16		benzene 601-020-00-8	200-753-7	71-43-2		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
17		toluene 601-021-00-3	203-625-9	108-88-3		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
18	0	ethylbenzene 601-023-00-4	202-849-4	100-41-4		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
19			202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.002	mg/kg		<0.002	mg/kg	<0.0000002 %		<lod< td=""></lod<>
20	4	cyanides { salts exception of completerricyanides and nespecified elsewhere 006-007-00-5	ex cyanides such nercuric oxycyanid	as ferrocyanides,		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
21	9	рН		PH		9.2	рН		9.2	рН	9.2 pH		
22		naphthalene 601-052-00-2	202-049-5	91-20-3		0.59	mg/kg		0.448	mg/kg	0.0000448 %	✓	
23	0	acenaphthylene	205-917-1	208-96-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
24	0	acenaphthene	201-469-6	83-32-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
25	0	fluorene	201-695-5	86-73-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
26	0	phenanthrene	201-581-5	85-01-8		0.14	mg/kg		0.106	mg/kg	0.0000106 %	✓	
27	0	anthracene	204-371-1	120-12-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
28	0	fluoranthene	205-912-4	206-44-0		0.13	mg/kg		0.0988	mg/kg	0.00000988 %	✓	
29	9	pyrene	204-927-3	129-00-0		0.12	mg/kg		0.0912	mg/kg	0.00000912 %	✓	
30		benzo[a]anthracen	1	56-55-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
31		chrysene	205-923-4	218-01-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
32		benzo[b]fluoranthe	1	205-99-2		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
33		benzo[k]fluoranther	1	207-08-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
34		benzo[a]pyrene; be		50-32-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
35	9	indeno[123-cd]pyre	1	193-39-5		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
36		dibenz[a,h]anthrace	1	53-70-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
37	0	benzo[ghi]perylene	1	191-24-2		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
38	0	monohydric phenol	1	P1186		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			1	1						Total:	0.0195 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

<LOD Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous Property to non-hazardous for cumulative determinand results below the threshold of: 500 mg/kg (0.05%) because: It is highly unlikely that soils (generally a refractory matrix) will be classified as flammable at concentrations of 1.00% or less. (AGS, 2019). This property is thus disregarded as potentially flammable.

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.0016%)

Page 24 of 45 AJ00E-18Q54-MJNRS www.hazwasteonline.com

Classification of sample: WS105-14/08/2024-0.40

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

 Sample name:
 LoW Code:

 WS105-14/08/2024-0.40
 Chapter:

 Sample Depth:
 Entry:

0.40-0.50 m Entry: Moisture content:

22%

(wet weight correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 22% Wet Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1		antimony { antimor 051-005-00-X	ny trioxide }	1309-64-4		<2	mg/kg	1.197	<2.394	mg/kg	<0.000239 %		<lod< td=""></lod<>
2	4	arsenic { arsenic tr 033-003-00-0	ioxide } 215-481-4	1327-53-3		6.4	mg/kg	1.32	6.591	mg/kg	0.000659 %	✓	
3	_	boron { <mark>diboron tric</mark> 005-008-00-8	oxide } 215-125-8	1303-86-2		0.45	mg/kg	3.22	1.13	mg/kg	0.000113 %	✓	
4	*	cadmium { <mark>cadmiu</mark> 048-002-00-0	<mark>m oxide</mark> } 215-146-2	1306-19-0		<0.1	mg/kg	1.142	<0.114	mg/kg	<0.0000114 %		<lod< td=""></lod<>
5	4	chromium in chrom chromium(III) oxide		ds { • 1308-38-9		18	mg/kg	1.462	20.52	mg/kg	0.00205 %	✓	
6	4	chromium in chromoxide }		1		<0.5	mg/kg	1.923	<0.962	mg/kg	<0.0000962 %		<lod< td=""></lod<>
7	4	copper { dicopper o				13	mg/kg	1.126	11.417	mg/kg	0.00114 %	✓	
8		lead {		ception of those	1	16	mg/kg		12.48	mg/kg	0.00125 %	✓	
9	4	mercury { mercury 080-010-00-X	dichloride } 231-299-8	7487-94-7		<0.05	mg/kg	1.353	<0.0677	mg/kg	<0.00000677 %		<lod< td=""></lod<>
10	₽	nickel { nickel(II) ca 028-010-00-0	222-068-2 [1] 240-408-8 [2] 265-748-4 [3] 235-715-9 [4]	3333-67-3 [1] 16337-84-1 [2] 65405-96-1 [3] 12607-70-4 [4]		12	mg/kg	2.022	18.93	mg/kg	0.00189 %	√	
11		selenium { selenium cadmium sulphose elsewhere in this A 034-002-00-8	lenide and those s			<0.25	mg/kg	1.405	<0.351	mg/kg	<0.0000351 %		<lod< td=""></lod<>
12	+	zinc { zinc oxide }	215-222-5	1314-13-2		47	mg/kg	1.245	45.631	mg/kg	0.00456 %	✓	
13	4	vanadium { divanadi pentoxide } 023-001-00-8	1	1		19	mg/kg	1.785	26.456	mg/kg	0.00265 %	✓	

П												75	
#			Determinand		CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	S							MC	
14	0	TPH (C6 to C40) p	etroleum group	TPH		<10.5	mg/kg		<10.5	mg/kg	<0.00105 %		<lod< td=""></lod<>
		tert-butyl methyl etl	her MTBF		\vdash								
15		2-methoxy-2-methy				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		603-181-00-X	216-653-1	1634-04-4	1								
16		benzene				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
10		601-020-00-8	200-753-7	71-43-2		20.001	mg/kg		40.001	ilig/kg	<0.0000001 /8		\LOD
17		toluene				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
			203-625-9	108-88-3									
18	Θ	ethylbenzene				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
\vdash			202-849-4	100-41-4	\vdash								
19			202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.002	mg/kg		<0.002	mg/kg	<0.0000002 %		<lod< td=""></lod<>
	*	cyanides { • salts	of hydrogen cyanic	de with the									
	Ĭ	exception of compl	ex cyanides such	as ferrocyanides,									
20		ferricyanides and n		e and those		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
		specified elsewhere	e in this Annex }	1	-								
21	0	PIT		PH		9	рН		9	рН	9pH		
00		naphthalene				0.4			0.4		0.00004.0/		1.00
22		· .	202-049-5	91-20-3	1	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
23	0	acenaphthylene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
23			205-917-1	208-96-8		ζ0.1	ilig/kg		ζ0.1	IIIg/kg	<0.00001 /8		\LOD
24	0	acenaphthene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			201-469-6	83-32-9		-				3 3			
25	0	fluorene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			201-695-5	86-73-7	-								
26	0	phenanthrene	201-581-5	85-01-8	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	8	anthracene	201-301-3	03-01-0									
27	9		204-371-1	120-12-7	+	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		fluoranthene		.20 .2 .									
28			205-912-4	206-44-0	1	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
20	0	pyrene		,		-0.4			-0.1		-0.00004.0/		1.00
29			204-927-3	129-00-0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
30		benzo[a]anthracen	e			<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		601-033-00-9	200-280-6	56-55-3		\U.1	g/kg		ν	g, kg			-205
31		chrysene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			205-923-4	218-01-9	_					0 0			
32		benzo[b]fluoranthe		hor oc c		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			205-911-9	205-99-2	-								
33		benzo[k]fluoranther		207-08-9	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
\vdash		benzo[a]pyrene; be	205-916-6	×01-00-9	-								
34			200-028-5	50-32-8	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	@	indeno[123-cd]pyrene			T	6.1					0.00021.01		
35		205-893-2 193-39-5			\parallel	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
36		dibenz[a,h]anthracene				-0.1	ma/ka		-0.1	maller	<0.00001.0/		-I OD
36		601-041-00-2 200-181-8 53-70-3			1	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
37	0	benzo[ghi]perylene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
Ľ	205-883-8 191-24-2				30.1			70.1	9,119				
38	monohydric phenols				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>	
\square		P1186									1		
		P1186								Total:	0.016 %	$oxed{oxed}$	

Kav	,
1 Cy	

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

₫ <LOD Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Classification of sample: WS107-14/08/2024-0.10

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code: WS107-14/08/2024-0.10 Chapter:

Moisture content:

Entry: 47% (wet weight correction)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

17: Construction and Demolition Wastes (including excavated soil

from contaminated sites)

Hazard properties

None identified

Determinands

Moisture content: 47% Wet Weight Moisture Correction applied (MC)

#		Determinand EU CLP index	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	•	number antimony { antimony trioxide }		<2 mg/kg	1.197	<2.394 mg/kg	<0.000239 %	_	<lod< th=""></lod<>
		051-005-00-X 215-175-0 1309-64-4	-					L	
2	4	arsenic { arsenic trioxide } 033-003-00-0		6.1 mg/kg	1.32	4.269 mg/kg	0.000427 %	✓	
	æ.		+	0.4	0.00	4.000 #	0.000400.00		1.00
3	-	005-008-00-8 215-125-8 1303-86-2	1	<0.4 mg/kg	3.22	<1.288 mg/kg	<0.000129 %		<lod< td=""></lod<>
4	æ	cadmium { cadmium oxide }		<0.1 ma/ka	1.142	<0.114 mg/kg	<0.0000114 %		<lod< th=""></lod<>
4		048-002-00-0 215-146-2 1306-19-0	1	<0.1 mg/kg	1.142	<0.114 mg/kg	<0.0000114 %		\ \LUD
5	*	chromium in chromium(III) compounds {		20 mg/kg	1.462	15.492 mg/kg	0.00155 %	√	
		215-160-9 1308-38-9	\perp						
6	₫.	chromium in chromium(VI) compounds { chromium(VI) oxide }		<0.5 mg/kg	1.923	<0.962 mg/kg	<0.0000962 %		<lod< th=""></lod<>
		024-001-00-0 215-607-8 1333-82-0	+						
7	4	copper { dicopper oxide; copper (I) oxide } 029-002-00-X 215-270-7 1317-39-1	-	16 mg/kg	1.126	9.548 mg/kg	0.000955 %	✓	
8	4	lead { • lead compounds with the exception of those specified elsewhere in this Annex }	1	32 mg/kg		16.96 mg/kg	0.0017 %	√	
		082-001-00-6							
9	4	mercury { mercury dichloride }		0.07 mg/kg	1.353	0.0502 mg/kg	0.00000502 %	/	
		080-010-00-X 231-299-8 7487-94-7		orer mg/mg				*	
10	•	nickel { nickel(II) carbonate } 028-010-00-0 222-068-2 [1] 3333-67-3 [1] 240-408-8 [2] 16337-84-1 [2] 265-748-4 [3] 65405-96-1 [3]		17 mg/kg	2.022	18.222 mg/kg	0.00182 %	✓	
11	*	235-715-9 [4] 12607-70-4 [4] selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		0.27 mg/kg	1.405	0.201 mg/kg	0.0000201 %	✓	
12	4	zinc { zinc oxide } 030-013-00-7 215-222-5 1314-13-2		64 mg/kg	1.245	42.221 mg/kg	0.00422 %	√	
13	*	vanadium { divanadium pentaoxide; vanadium pentoxide } 023-001-00-8 215-239-8 1314-62-1		25 mg/kg	1.785	23.654 mg/kg	0.00237 %	√	
14	0	TPH (C6 to C40) petroleum group		73 mg/kg		38.69 mg/kg	0.00387 %	✓	

		Determinand									,	Т	
#					CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	2 P							MC	
15		tert-butyl methyl et 2-methoxy-2-meth	ylpropane	4004.04.4		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
16		603-181-00-X benzene	216-653-1	1634-04-4		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		601-020-00-8	200-753-7	71-43-2	-								
17		toluene 601-021-00-3	203-625-9	108-88-3		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
18	0	ethylbenzene 601-023-00-4	202-849-4	100-41-4	-	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		xylene											
19		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.002	mg/kg		<0.002	mg/kg	<0.0000002 %		<lod< td=""></lod<>
20	0	pH		PH	-	8.9	рН		8.9	рН	8.9 pH		
0.4		naphthalene		1		4.4			0.740	,	0.0000740.0/	١.	
21		601-052-00-2	202-049-5	91-20-3		1.4	mg/kg		0.742	mg/kg	0.0000742 %	✓	
22	0	acenaphthylene	205-917-1	208-96-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
23	0	acenaphthene	201-469-6	83-32-9	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
24	0	fluorene	201-695-5	86-73-7		0.3	mg/kg		0.159	mg/kg	0.0000159 %	✓	
25	8	phenanthrene	201-581-5	85-01-8		2.8	mg/kg		1.484	mg/kg	0.000148 %	√	
26	9	anthracene	204-371-1	120-12-7		0.77	mg/kg		0.408	mg/kg	0.0000408 %	√	
27	0	fluoranthene	205-912-4	206-44-0		5.2	mg/kg		2.756	mg/kg	0.000276 %	√	
28	0	pyrene	204-927-3	129-00-0		3.8	mg/kg		2.014	mg/kg	0.000201 %	√	
		benzo[a]anthracen	1	123 00 0	+								
29		601-033-00-9	200-280-6	56-55-3		2.3	mg/kg		1.219	mg/kg	0.000122 %	✓	
30		chrysene 601-048-00-0	205-923-4	218-01-9		2.3	mg/kg		1.219	mg/kg	0.000122 %	✓	
31		benzo[b]fluoranthe	ene 205-911-9	205-99-2		2.6	mg/kg		1.378	mg/kg	0.000138 %	✓	
32		benzo[k]fluoranthe 601-036-00-5	ne 205-916-6	207-08-9		1.1	mg/kg		0.583	mg/kg	0.0000583 %	√	
33		benzo[a]pyrene; be 601-032-00-3	enzo[def]chrysene	50-32-8	-	2	mg/kg		1.06	mg/kg	0.000106 %	√	
34	9	indeno[123-cd]pyre	ene 205-893-2	193-39-5		1.2	mg/kg		0.636	mg/kg	0.0000636 %	√	
35		dibenz[a,h]anthrac		53-70-3	T	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
36	0	benzo[ghi]perylene	1	191-24-2		1.2	mg/kg		0.636	mg/kg	0.0000636 %	√	
37		DDT (ISO); clofend 1,1,1-trichloro-2,2- dichlorodiphenyltric 602-045-00-7	otane (INN); dicop bis(4-chloropheny	hane;		<0.2	mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
38		chlordane (ISO); 1,2,4,5,6,7,8,8-octa methanoindan	achloro-3a,4,7,7a-	tetrahydro-4,7-		<0.4	mg/kg		<0.4	mg/kg	<0.00004 %		<lod< td=""></lod<>
39		602-047-00-8 hexachlorocyclohe 602-043-00-6	200-349-0 exanes, including li 210-168-9, 200-401-2, 206-270-8, 206-271-3	57-74-9 ndane 58-89-9, 319-84-6, 319-85-7, 608-73-1		<0.8	mg/kg		<0.8	mg/kg	<0.00008 %		<lod< td=""></lod<>

#			Determinand		Note	User entere	ed data	Conv.	Compound	d conc.	Classification	MC Applied	Conc. Not
"		EU CLP index number	EC Number	CAS Number	CLP			Factor	oopou	2 00.10.	value	MC A	Used
40		dieldrin (ISO) 602-049-00-9	200-484-5	60-57-1		<0.2	mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
41	6	endrin (ISO); 1,2,3,4,10,10-hexa octahydro-1,4:5,8-c	chloro-6,7-epoxy-1 dimethanonaphthal 200-775-7	,4,4a,5,6,7,8,8a-		<0.6	mg/kg		<0.6	mg/kg	<0.00006 %		<lod< td=""></lod<>
42	r	methanoindene	chloro-3a,4,7,7a-te	etrahydro-4,7-		<0.2	mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
43		aldrin (ISO) 602-048-00-3	206-215-8	309-00-2		<0.2	mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
44	e r	monohydric phenol	s	P1186		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
45	į.	phosphorodithioate	-diethyl ethylthiome	ethyl		<0.2	mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
46	r C	demeton-S (ISO); o	206-052-2 diethyl-S-2-ethylthic 204-801-8	298-02-2 pethyl 126-75-0		<0.2	mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
47	F	ohosphorodithioate		298-04-4		<0.2	mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
48	k	phosphorothioate	200-231-9	thylthion-m-tolyl) 55-38-9		<0.2	mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
49	6	ethylphosphonothic		chlorophenyl 327-98-0		<0.2	mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
50	t (phosphorodithioate	obenzotriazin-3-ylm	ethyl 86-50-0		<0.2	mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
51	(coumaphos (ISO); O,O-diethyl phosph	O-3-chloro-4-meth			<0.2	mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
52	6		yl-1,3,5-triazine-2,4 204-535-2	1-diamine 122-34-9		<0.2	mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
53	2		ine-6-isopropylamiı 217-617-8	ne-1,3,5-triazine 1912-24-9		<0.2	mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
54	2		ppropylamino)-1,3,5 205-359-9	5-triazine 139-40-2		<0.2	mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
55	1	N¢-ethyl-1,3,5-triaz		loro- 5915-41-3		<0.2	mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
56	t t	triazine	-ethylamino-6-metl	hoxy-1,3,5- 26259-45-0		<0.2	mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
57	2	simetryn (ISO); 2,4-bis(ethylamino)	-6-methylthio-1,3,5 213-801-7			<0.2	mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
58	t	ametryn (ISO); N-ethyl-N'-isopropy triazine-2,4-diamine	rl-6-(methylthio)-1,3 e			<0.2	mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
59	ł 2	heptachlor epoxide 2,3-epoxy-1,4,5,6,7 tetrahydro-4,7-meth	; 7,8,8-heptachloro-3	834-12-8 a,4,7,7a- 1024-57-3		<0.2	mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User enter	ed data	Conv. Factor	Compoun	d conc.	Classification value	MC Applied	Conc. Not Used
60	0	p,p'-DDE	200-784-6	72-55-9		<0.2	mg/kg		<0.2	mg/kg	<0.00002 %		<lod< th=""></lod<>
61	0	p,p'-DDD	200-783-0	72-54-8		<0.2	mg/kg		<0.2	mg/kg	<0.00002 %		<lod< th=""></lod<>
62	0	p,p'-methoxychlor	200-779-9	72-43-5		<0.2	mg/kg		<0.2	mg/kg	<0.00002 %		<lod< th=""></lod<>
63		endosulfan (ISO); 1,2,3,4,7,7-hexachloro-8,9,10-trinorborn-2-en-5,6-ylenedimethylene sulfite; 1,4,5,6,7,7-hexachloro-8,9,10-trinorborn-5-en-2,3-ylenedimethylene sulfite				<0.6	mg/kg		<0.6	mg/kg	<0.00006 %		<lod< th=""></lod<>
		602-052-00-5	204-079-4	115-29-7						Total:	0.0196 %	Ш	

K	е	١	1

- /	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous Property to non-hazardous for cumulative determinand results below the threshold of: 500 mg/kg (0.05%) because: It is highly unlikely that soils (generally a refractory matrix) will be classified as flammable at concentrations of 1.00% or less. (AGS, 2019). This property is thus disregarded as potentially flammable.

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.00387%)

Classification of sample: WS109-14/08/2024-0.40

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Entry:

Sample details

Sample name: LoW Code: WS109-14/08/2024-0.40 Chapter: Sample Depth:

0.40-0.50 m

Moisture content:

23%

(wet weight correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 23% Wet Weight Moisture Correction applied (MC)

#		EU CLP index	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	~	antimony { antimor	ny trioxide } 215-175-0	1309-64-4		<2	mg/kg	1.197	<2.394	mg/kg	<0.000239 %		<lod< th=""></lod<>
2	4	arsenic { arsenic tr		1327-53-3		16	mg/kg	1.32	16.266	mg/kg	0.00163 %	√	
3	-	boron { diboron tric 005-008-00-8	oxide } 215-125-8	1303-86-2		<0.4	mg/kg	3.22	<1.288	mg/kg	<0.000129 %		<lod< td=""></lod<>
4	4	cadmium { <mark>cadmiu</mark> 048-002-00-0	<mark>m oxide</mark> } 215-146-2	1306-19-0		<0.1	mg/kg	1.142	<0.114	mg/kg	<0.0000114 %		<lod< td=""></lod<>
5	4	chromium in chrom chromium(III) oxide	e (worst case) }			29	mg/kg	1.462	32.637	mg/kg	0.00326 %	✓	
6	4	chromium in chromoxide }	215-160-9 nium(VI) compound 215-607-8	1308-38-9 ds {		<0.5	mg/kg	1.923	<0.962	mg/kg	<0.0000962 %		<lod< th=""></lod<>
7	4	copper { dicopper o	J			14	mg/kg	1.126	12.137	mg/kg	0.00121 %	✓	
8	4	lead { lead compospecified elsewher		ception of those	1	27	mg/kg		20.79	mg/kg	0.00208 %	√	
9	4	mercury { mercury 080-010-00-X	dichloride } 231-299-8	7487-94-7	-	0.07	mg/kg	1.353	0.073	mg/kg	0.0000073 %	√	
10	4	nickel {	arbonate } 222-068-2 [1] 240-408-8 [2] 265-748-4 [3] 235-715-9 [4]	3333-67-3 [1] 16337-84-1 [2] 65405-96-1 [3] 12607-70-4 [4]		19	mg/kg	2.022	29.588	mg/kg	0.00296 %	✓	
11	4	selenium { selenium cadmium sulphose elsewhere in this A 034-002-00-8	elenide and those s			0.83	mg/kg	1.405	0.898	mg/kg	0.0000898 %	√	
12	a Car	zinc { zinc oxide }	215-222-5	1314-13-2		58	mg/kg	1.245	55.589	mg/kg	0.00556 %	√	
13	4	vanadium { divanade pentoxide } 023-001-00-8				35	mg/kg	1.785	48.111	mg/kg	0.00481 %	√	

#			Determinand		CLP Note	User entere	d data	Conv.	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP			racioi			value	MC/	Useu
14	0	TPH (C6 to C40) p	etroleum group	ТРН		11	mg/kg		8.47	mg/kg	0.000847 %	✓	
		tert-butyl methyl et		IPH									
15		2-methoxy-2-methy 603-181-00-X	/lpropane 216-653-1	1634-04-4	-	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
16		benzene 601-020-00-8	200-753-7	71-43-2		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
17		toluene	1			<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
18	0	601-021-00-3 ethylbenzene	203-625-9	108-88-3		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %	H	<lod< td=""></lod<>
		601-023-00-4 xylene	202-849-4	100-41-4		10.001			40.001	9/1.9			
19		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.002	mg/kg		<0.002	mg/kg	<0.0000002 %		<lod< td=""></lod<>
20	«	cyanides { salts exception of completerricyanides and no specified elsewhere	ex cyanides such nercuric oxycyanid	as ferrocyanides,		0.5	mg/kg	1.884	0.725	mg/kg	0.0000725 %	✓	
21	0	006-007-00-5 pH		DII		8.8	рН		8.8	рН	8.8 pH		
22		naphthalene		PH		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		i	202-049-5	91-20-3	1	40.1				mg/kg			
23	0	acenaphthylene	205-917-1	208-96-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
24	0	acenaphthene	201-469-6	83-32-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
25	0	fluorene	201-695-5	86-73-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
26	0	phenanthrene	201-581-5	85-01-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
27	9	anthracene	204-371-1	120-12-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
28	0	fluoranthene	204-371-1	120-12-1		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	0	pyrene	205-912-4	206-44-0		0.4			0.4		0.00004.0/		1.00
29			204-927-3	129-00-0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
30			e 200-280-6	56-55-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
31		chrysene 601-048-00-0	205-923-4	218-01-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
32		benzo[b]fluoranthe 601-034-00-4	ne 205-911-9	205-99-2		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
33		benzo[k]fluoranthe	1	207-08-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
34		benzo[a]pyrene; be	1			<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
35	9	indeno[123-cd]pyre	ene			<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
36		dibenz[a,h]anthrac	205-893-2 ene	193-39-5		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %	H	<lod< td=""></lod<>
-	e	601-041-00-2 benzo[ghi]perylene	200-181-8	53-70-3	-								
37	_		205-883-8	191-24-2		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
38	Θ	monohydric pheno	IS	P1186		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
										Total:	0.0232 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

<LOD Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous Property to non-hazardous for cumulative determinand results below the threshold of: 500 mg/kg (0.05%) because: It is highly unlikely that soils (generally a refractory matrix) will be classified as flammable at concentrations of 1.00% or less. (AGS, 2019). This property is thus disregarded as potentially flammable.

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.00084%)

Page 34 of 45 AJ00E-18Q54-MJNRS www.hazwasteonline.com

Classification of sample: TP104-14/08/2024-0.10

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code: TP104-14/08/2024-0.10 Chapter:

Moisture content: 17%

(wet weight correction)

Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 17% Wet Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	æ å	antimony { antimor	ny trioxide }	1309-64-4		<2	mg/kg	1.197	<2.394	mg/kg	<0.000239 %		<lod< th=""></lod<>
2	4	arsenic { arsenic tr		1327-53-3		11	mg/kg	1.32	12.055	mg/kg	0.00121 %	✓	
3	4	boron { diboron tric 005-008-00-8	oxide } 215-125-8	1303-86-2		0.63	mg/kg	3.22	1.684	mg/kg	0.000168 %	✓	
4	æ\$	cadmium { <mark>cadmiu</mark> 048-002-00-0	<mark>m oxide</mark> } 215-146-2	1306-19-0		<0.1	mg/kg	1.142	<0.114	mg/kg	<0.0000114 %		<lod< td=""></lod<>
5	4	chromium in chrom		ls { • 1308-38-9		24	mg/kg	1.462	29.114	mg/kg	0.00291 %	√	
6	4	chromium in chromoxide } 024-001-00-0	pium(VI) compound	ds { chromium(VI)		<0.5	mg/kg	1.923	<0.962	mg/kg	<0.0000962 %		<lod< th=""></lod<>
7	4	copper { dicopper of the copper oxide; copper (I) ox 215-270-7	tide } 1317-39-1		21	mg/kg	1.126	19.624	mg/kg	0.00196 %	✓		
8	4	lead { lead compospecified elsewher 082-001-00-6		ception of those	1	30	mg/kg		24.9	mg/kg	0.00249 %	✓	
9	4	mercury { mercury 080-010-00-X	dichloride }	7487-94-7		0.06	mg/kg	1.353	0.0674	mg/kg	0.00000674 %	√	
10	æ	nickel {	222-068-2 [1] 240-408-8 [2] 265-748-4 [3] 235-715-9 [4]	3333-67-3 [1] 16337-84-1 [2] 65405-96-1 [3] 12607-70-4 [4]		18	mg/kg	2.022	30.215	mg/kg	0.00302 %	√	
11	4	selenium { selenium cadmium sulphose elsewhere in this A	lenide and those s			0.42	mg/kg	1.405	0.49	mg/kg	0.000049 %	✓	
12	æ\$	zinc { zinc oxide }	215-222-5	1314-13-2		65	mg/kg	1.245	67.152	mg/kg	0.00672 %	√	
13	4	vanadium { divana pentoxide }	1	1		27	mg/kg	1.785	40.006	mg/kg	0.004 %	√	
14	0	TPH (C6 to C40) p	etroleum group	TPH		11	mg/kg		9.13	mg/kg	0.000913 %	✓	

HazWasteOnline™ Report created by Matthew Kent on 07 Oct 2024

#			Determinand EU CLP index		Note	User entere	d data	Conv.	Compound	conc.	Classification	MC Applied	Conc. Not
			EC Number	CAS Number	CLP			Factor			value	MC A	Used
15		2-methoxy-2-methy	/lpropane			<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
16		benzene	216-653-1	1634-04-4		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
17		601-020-00-8 toluene	200-753-7	71-43-2		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %	Н	<lod< td=""></lod<>
	0	601-021-00-3 ethylbenzene	203-625-9	108-88-3								Н	
18		601-023-00-4	202-849-4	100-41-4		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
19		xylene 601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.002	mg/kg		<0.002	mg/kg	<0.0000002 %		<lod< td=""></lod<>
20	4	cyanides { salts exception of completerricyanides and name specified elsewhere 006-007-00-5	ex cyanides such a nercuric oxycyanid	as ferrocyanides,		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
21	0	pH		PH		8.9	рН		8.9	рН	8.9 pH		
22		naphthalene 601-052-00-2	202-049-5	91-20-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
23	0	acenaphthylene	205-917-1	208-96-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
24	0	acenaphthene	201-469-6	83-32-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
25	0	fluorene	201-695-5	86-73-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
26	0	phenanthrene	201-581-5	85-01-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
27	0	anthracene	204-371-1	120-12-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
28	0	fluoranthene	205-912-4	206-44-0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
29	Θ	pyrene	204-927-3	129-00-0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
30		benzo[a]anthracen 601-033-00-9		56-55-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
31		chrysene 601-048-00-0	205-923-4	218-01-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
32		benzo[b]fluoranthe 601-034-00-4	ne 205-911-9	205-99-2		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
33		benzo[k]fluoranthe 601-036-00-5	ne 205-916-6	207-08-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
34		benzo[a]pyrene; be 601-032-00-3	enzo[def]chrysene 200-028-5	50-32-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
35	0	indeno[123-cd]pyre	ene 205-893-2	193-39-5		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
36		dibenz[a,h]anthrac 601-041-00-2	ene 200-181-8	53-70-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
37	0	benzo[ghi]perylene	205-883-8	191-24-2		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
38		DDT (ISO); clofeno 1,1,1-trichloro-2,2-l dichlorodiphenyltric 602-045-00-7	bis(4-chlorophenyl			<0.2	mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
39		chlordane (ISO); 1,2,4,5,6,7,8,8-octa methanoindan	achloro-3a,4,7,7a-1	tetrahydro-4,7-		<0.4	mg/kg		<0.4	mg/kg	<0.00004 %		<lod< td=""></lod<>
	Ш	602-047-00-8	200-349-0	57-74-9									

#		Determinand			Note	User entered data		Compound conc.		Classification	MC Applied	Conc. Not
"		EU CLP index number	EC Number	CAS Number	CLP	Oser entereu uata	Factor	Joinpound conc.		value		Used
40			xanes, including lin 210-168-9, 200-401-2, 206-270-8, 206-271-3	58-89-9, 319-84-6, 319-85-7, 608-73-1		<0.8 mg/kg		<0.8	mg/kg	<0.00008 %		<lod< td=""></lod<>
41		dieldrin (ISO) 602-049-00-9	200-484-5	60-57-1		<0.2 mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
42		endrin (ISO); 1,2,3,4,10,10-hexa octahydro-1,4:5,8-c	chloro-6,7-epoxy-	1,4,4a,5,6,7,8,8a-		<0.6 mg/kg		<0.6	mg/kg	<0.00006 %		<lod< td=""></lod<>
43		heptachlor (ISO); 1,4,5,6,7,8,8-hepta methanoindene	chloro-3a,4,7,7a-t	1		<0.2 mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
44		aldrin (ISO)	200-962-3	309-00-2		<0.2 mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
45	0	monohydric phenol		P1186	+	<0.1 mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
46		phorate (ISO); O,O phosphorodithioate 015-033-00-6	, ,			<0.2 mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
47		demeton-S (ISO); ophosphorothioate				<0.2 mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
48		disulfoton (ISO); Ophosphorodithioate	O-diethyl 2-ethylth	1		<0.2 mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
49		fenthion (ISO); O,O-dimethyl-O-(4-methylthion-m-tolyl) phosphorothioate 015-048-00-8 200-231-9 55-38-9				<0.2 mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
50		trichloronate (ISO); ethylphosphonothio 015-098-00-0		richlorophenyl 327-98-0		<0.2 mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
51		azinphos-methyl (IS O,O-dimethyl-4-oxo phosphorodithioate 015-039-00-9	benzotriazin-3-ylr	nethyl		<0.2 mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
52		coumaphos (ISO); O,O-diethyl phosph	O-3-chloro-4-meth	1		<0.2 mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
53		simazine (ISO); 6-chloro-N,N'-dieth 612-088-00-3	yl-1,3,5-triazine-2, 204-535-2	4-diamine 122-34-9		<0.2 mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
54		atrazine (ISO); 2-chloro-4-ethylam 613-068-00-7	ine-6-isopropylam 217-617-8	ine-1,3,5-triazine 1912-24-9		<0.2 mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
55		propazine (ISO); 2-chloro-4,6-bis(iso 613-067-00-1	propylamino)-1,3, 205-359-9	5-triazine 139-40-2		<0.2 mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
56		terbuthylazine (ISC N¢-ethyl-1,3,5-triaz 613-323-00-2		5915-41-3		<0.2 mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
57		secbumeton (ISO); 2-sec-butylamino-4 triazine 613-063-00-X		thoxy-1,3,5- 26259-45-0		<0.2 mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
58		simetryn (ISO); 2,4-bis(ethylamino)	1	1		<0.2 mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>
59		ametryn (ISO); N-ethyl-N'-isopropy triazine-2,4-diamino 613-010-00-0		3,5- 834-12-8		<0.2 mg/kg		<0.2	mg/kg	<0.00002 %		<lod< td=""></lod<>

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
60		heptachlor epoxide; 2,3-epoxy-1,4,5,6,7 tetrahydro-4,7-meth	,8,8-heptachloro nanoindane			<0.2 mg/kg		<0.2 mg/kg	<0.00002 %		<lod< td=""></lod<>
		602-063-00-5 213-831-0 1024-57-3								Н	
61	0				<u> </u>	<0.2 mg/kg		<0.2 mg/kg	<0.00002 %		<lod< td=""></lod<>
			200-784-6	72-55-9	╙						
62	•	p,p'-DDD				<0.2 mg/kg		<0.2 mg/kg	<0.00002 %		<lod< td=""></lod<>
			200-783-0	72-54-8							
63	0	p,p'-methoxychlor				<0.2 mg/kg		<0.2 mg/kg	<0.00002 %		<lod< td=""></lod<>
03						<0.2 mg/kg		<0.2 IIIg/kg	<0.00002 %		< LOD
64		endosulfan (ISO); 1,2,3,4,7,7-hexachlylenedimethylene s 1,4,5,6,7,7-hexachlylenedimethylene s	ulfite; oro-8,9,10-trinor	,		<0.6 mg/kg		<0.6 mg/kg	<0.00006 %		<lod< td=""></lod<>
		602-052-00-5	204-079-4	115-29-7							
	Total										

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

₫ <LOD Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous Property to non-hazardous for cumulative determinand results below the threshold of: 500 mg/kg (0.05%) because: It is highly unlikely that soils (generally a refractory matrix) will be classified as flammable at concentrations of 1.00% or less. (AGS, 2019). This property is thus disregarded as potentially flammable.

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.00091%)

Page 38 of 45 AJ00E-18Q54-MJNRS www.hazwasteonline.com

Classification of sample: HDP2-23/09/2024-0.10

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code: HDP2-23/09/2024-0.10 Chapter: Moisture content:

30%

(wet weight correction)

Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 30% Wet Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	4	antimony { antimor	ny trioxide }	1309-64-4		<2	mg/kg	1.197	<2.394	mg/kg	<0.000239 %		<lod< th=""></lod<>
2	4	arsenic { arsenic tr	ioxide }			13	mg/kg	1.32	12.015	mg/kg	0.0012 %	√	
3	4	033-003-00-0 boron {		1327-53-3		0.4	mg/kg	3.22	0.902	mg/kg	0.0000902 %	√	
4	4	cadmium { cadmiu		1303-86-2		<0.1	mg/kg	1.142	<0.114	mg/kg	<0.0000114 %	L	<lod< td=""></lod<>
5	*	chromium(III) oxide	215-146-2 nium(III) compound e (worst case) } 215-160-9	1306-19-0 s {		23	mg/kg	1.462	23.531	mg/kg	0.00235 %	√	
6	4		nium(VI) compound			<0.5	mg/kg	1.923	<0.962	mg/kg	<0.0000962 %		<lod< td=""></lod<>
7	4	copper { dicopper o	oxide; copper (I) ox 215-270-7			13	mg/kg	1.126	10.246	mg/kg	0.00102 %	√	
8	*	lead {	pounds with the execution this Annex }	ception of those	1	41	mg/kg		28.7	mg/kg	0.00287 %	√	
9	4	mercury { mercury 080-010-00-X	dichloride }	7487-94-7		0.11	mg/kg	1.353	0.104	mg/kg	0.0000104 %	√	
10	4	nickel {		3333-67-3 [1] 16337-84-1 [2] 65405-96-1 [3] 12607-70-4 [4]		15	mg/kg	2.022	21.235	mg/kg	0.00212 %	1	
11	₩.		m compounds with elenide and those s unnex 			0.87	mg/kg	1.405	0.856	mg/kg	0.0000856 %	✓	
12	4	zinc { zinc oxide }	215-222-5	1314-13-2		70	mg/kg	1.245	60.991	mg/kg	0.0061 %	√	
13	4		dium pentaoxide; v	1		33	mg/kg	1.785	41.238	mg/kg	0.00412 %	√	
14	0	TPH (C6 to C40) p	etroleum group	TPH		75	mg/kg		52.5	mg/kg	0.00525 %	✓	

HazWasteOnline™ Report created by Matthew Kent on 07 Oct 2024

#			Note	User entere	ed data	Conv.	Compound conc.		Classification value	MC Applied	Conc. Not Used		
		EU CLP index number	EC Number	CAS Number	CLP			Factor			value	MC /	Usea
15		tert-butyl methyl etl 2-methoxy-2-methy	/lpropane			<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
			216-653-1	1634-04-4	-								
16		benzene 601-020-00-8	200-753-7	71-43-2		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
17		toluene 601-021-00-3	203-625-9	108-88-3		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
18	9	ethylbenzene				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
			202-849-4	100-41-4	╁							Н	
19			202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.002	mg/kg		<0.002	mg/kg	<0.0000002 %		<lod< td=""></lod<>
20	4	cyanides { salts exception of completerricyanides and no specified elsewhere	ex cyanides such nercuric oxycyanid	as ferrocyanides,		0.6	mg/kg	1.884	0.791	mg/kg	0.0000791 %	✓	
\vdash		006-007-00-5			-								
21	Θ	pH		PH		6	рН		6	pН	6рН		
22		naphthalene 601-052-00-2	202-049-5	91-20-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		acenaphthylene		0.200									
23		. ,	205-917-1	208-96-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
24	9	acenaphthene	201-469-6	83-32-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
25	0	fluorene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
26	0	phenanthrene	201-695-5	86-73-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	_	anthracene	201-581-5	85-01-8	-								
27	0		204-371-1	120-12-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
28	0	fluoranthene	205-912-4	206-44-0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
29	0	pyrene	204-927-3	129-00-0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
30		benzo[a]anthracen		56-55-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
31		chrysene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
32		benzo[b]fluoranthe	205-923-4 ne 205-911-9	218-01-9	\vdash	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
\vdash			+							\vdash			
33		benzo[k]fluoranther	ne 205-916-6	207-08-9	L	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
34		benzo[a]pyrene; be 601-032-00-3	enzo[def]chrysene 200-028-5	50-32-8	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
35	0	indeno[123-cd]pyre		193-39-5	1	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
36		dibenz[a,h]anthrace	ene	"		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
37	0	benzo[ghi]perylene		53-70-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
38	0	monohydric phenol	205-883-8 Is	191-24-2	+	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
				P1186		30.1	g/kg				<u> </u>		
<u> </u>										Total:	0.0258 %		

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

₫ <LOD Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

Below limit of detection

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous Property to non-hazardous for cumulative determinand results below the threshold of: 500 mg/kg (0.05%) because: It is highly unlikely that soils (generally a refractory matrix) will be classified as flammable at concentrations of 1.00% or less. (AGS, 2019). This property is thus disregarded as potentially flammable.

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.00525%)

Appendix A: Classifier defined and non GB MCL determinands

chromium(III) oxide (worst case) (EC Number: 215-160-9, CAS Number: 1308-38-9)

Description/Comments: Data from C&L Inventory Database

Data source: https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/33806

Data source date: 17 Jul 2015

Hazard Statements: Acute Tox. 4; H332, Acute Tox. 4; H302, Eye Irrit. 2; H319, STOT SE 3; H335, Skin Irrit. 2; H315, Resp. Sens. 1; H334, Skin

Sens. 1; H317, Repr. 1B; H360FD, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

lead compounds with the exception of those specified elsewhere in this Annex

GB MCL index number: 082-001-00-6

Description/Comments: Least-worst case: IARC considers lead compounds Group 2A; Probably carcinogenic to humans; Lead REACH

Consortium, following MCL protocols, considers many simple lead compounds to be Carcinogenic category 2

Additional Hazard Statement(s): Carc. 2; H351 Reason for additional Hazards Statement(s):

20 Nov 2021 - Carc. 2; H351 hazard statement sourced from: IARC Group 2A (Sup 7, 87) 2006; Lead REACH Consortium

www.reach-lead.eu/substanceinformation.html. Review date 29/09/2015

TPH (C6 to C40) petroleum group (CAS Number: TPH)

Description/Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013

Data source: WM3 1st Edition 2015 Data source date: 25 May 2015

Hazard Statements: Flam. Liq. 3; H226 , Asp. Tox. 1; H304 , STOT RE 2; H373 , Muta. 1B; H340 , Carc. 1B; H350 , Repr. 2; H361d , Aquatic Chronic 2;

H411

ethylbenzene (EC Number: 202-849-4, CAS Number: 100-41-4)

GB MCL index number: 601-023-00-4

Description/Comments:

Additional Hazard Statement(s): Carc. 2; H351 Reason for additional Hazards Statement(s):

20 Nov 2021 - Carc. 2; H351 hazard statement sourced from: IARC Group 2B (77) 2000

• salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex

GB MCL index number: 006-007-00-5

Description/Comments: Conversion factor based on a worst case compound: sodium cyanide

Additional Hazard Statement(s): EUH032 >= 0.2 % Reason for additional Hazards Statement(s):

20 Nov 2021 - EUH032 >= 0.2 % hazard statement sourced from: WM3, Table C12.2

pH (CAS Number: PH)

Description/Comments: Appendix C4 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: None.

acenaphthylene (EC Number: 205-917-1, CAS Number: 208-96-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

 $Hazard\ Statements:\ Acute\ Tox.\ 4;\ H302\ ,\ Acute\ Tox.\ 1;\ H330\ ,\ Acute\ Tox.\ 1;\ H310\ ,\ Eye\ Irrit.\ 2;\ H319\ ,\ STOT\ SE\ 3;\ H335\ ,\ Skin\ Irrit.\ 2;\ H315\ ,\ H315\ ,\ H315\ ,\ H315\ ,\ H315\$

acenaphthene (EC Number: 201-469-6, CAS Number: 83-32-9)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410 , Aquatic Chronic 2; H411

[®] fluorene (EC Number: 201-695-5, CAS Number: 86-73-7)

Description/Comments: Data from C&L Inventory Database

 ${\bf Data\ source:\ http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database}$

Data source date: 06 Aug 2015

Hazard Statements: Aquatic Acute 1; H400, Aquatic Chronic 1; H410

Page 42 of 45 AJ00E-18Q54-MJNRS www.hazwasteonline.com

phenanthrene (EC Number: 201-581-5, CAS Number: 85-01-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015

Hazard Statements: Acute Tox. 4; H302, Eye Irrit. 2; H319, STOT SE 3; H335, Carc. 2; H351, Skin Sens. 1; H317, Aquatic Acute 1; H400, Aquatic

Chronic 1; H410, Skin Irrit. 2; H315

anthracene (EC Number: 204-371-1, CAS Number: 120-12-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Eye Irrit. 2; H319, STOT SE 3; H335, Skin Irrit. 2; H315, Skin Sens. 1; H317, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

• fluoranthene (EC Number: 205-912-4, CAS Number: 206-44-0)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 21 Aug 2015

Hazard Statements: Acute Tox. 4; H302, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

pyrene (EC Number: 204-927-3, CAS Number: 129-00-0)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 2014

Data source: http://echa.europa.eu/web/quest/information-on-chemicals/cl-inventory-database

Data source date: 21 Aug 2015

Hazard Statements: Skin Irrit. 2; H315, Eye Irrit. 2; H319, STOT SE 3; H335, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

• indeno[123-cd]pyrene (EC Number: 205-893-2, CAS Number: 193-39-5)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015 Hazard Statements: Carc. 2; H351

• benzo[ghi]perylene (EC Number: 205-883-8, CAS Number: 191-24-2)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 28/02/2015 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 23 Jul 2015

Hazard Statements: Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

monohydric phenols (CAS Number: P1186)

Description/Comments: Combined hazards statements from harmonised entries in CLP for phenol, cresols and xylenols (604-001-00-2, 604-004-00-9, 604-006-00-X)

Data source: CLP combined data Data source date: 26 Mar 2019

Hazard Statements: Muta. 2; H341, Acute Tox. 3; H331, Acute Tox. 3; H311, Acute Tox. 3; H301, STOT RE 2; H373, Skin Corr. 1B; H314, Skin Corr. 1B; H314 >= 3 %, Skin Irrit. 2; H315 1 <= conc. < 3 %, Eye Irrit. 2; H319 1 <= conc. < 3 %, Aquatic Chronic 2; H411

p,p'-DDE (EC Number: 200-784-6, CAS Number: 72-55-9)

Description/Comments: other names: 4,4'-DDE; 2,2-bis(p-chlorophenyl)-1,1-dichloroethylene

Data source: ECHA's C&L inventory database

https://www.echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database/-/discli/details/21845

Data source date: 11 Jan 2018

Hazard Statements: Acute Tox. 4; H302 , Acute Tox. 3; H311 , Skin Irrit. 2; H315 , Acute Tox. 3; H331 , Acute Tox. 4; H332 , Carc. 2; H351 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

p,p'-DDD (EC Number: 200-783-0, CAS Number: 72-54-8)

Description/Comments: other names: Rhothane; p,p'-TDE; 4,4'-DDD; 4,4'-TDE;

Data source: ECHA's C&L inventory database

https://www.echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database/-/discli/details/21283

Data source date: 11 Jan 2018

Hazard Statements: Acute Tox. 3; H301 , Acute Tox. 4; H312 , Carc. 2; H351 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

p,p'-methoxychlor (EC Number: 200-779-9, CAS Number: 72-43-5)

Description/Comments: other names: Methoxychlor; DMDT; Dimethoxy-DDT; Methoxy-DDT; Methoxcide; p,p'-Dimethoxydiphenyltrichloroethane;

1,1,1-Trichloro-2,2-bis(4-methoxyphenyl)ethane Data source: ECHA's C&L inventory database

https://www.echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database/-/discli/details/112624

Data source date: 11 Jan 2018

Hazard Statements: Acute Tox. 4; H302, Acute Tox. 4; H312, Acute Tox. 4; H332, Carc. 2; H351, Repr. 2; H361, STOT SE 2; H371, STOT RE 2;

H373, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

Appendix B: Rationale for selection of metal species

antimony {antimony trioxide}

Worst case CLP species based on hazard statements/molecular weight and low solubility. Industrial sources include: flame retardants in electrical apparatus, textiles and coatings.

arsenic {arsenic trioxide}

Reasonable case CLP species based on hazard statements/molecular weight and most common (stable) oxide of arsenic. Industrial sources include: smelting; main precursor to other arsenic compounds.

boron {diboron trioxide}

Reasonable case CLP species based on hazard statements/ molecular weight, physical form and low solubility. Industrial sources include: fluxing agent for glass/enamels; additive for fibre optics, borosilicate glass

cadmium {cadmium oxide}

Reasonable case CLP species based on hazard statements/molecular weight, very low solubility in water. Industrial sources include: electroplating baths, electrodes for storage batteries, catalysts, ceramic glazes, phosphors, pigments and nematocides. Worst case compounds in CLP: cadmium sulphate, chloride, fluoride & iodide not expected as either very soluble and/or compound's industrial usage not related to site history

chromium in chromium(III) compounds {chromium(III) oxide (worst case)}

Reasonable case species based on hazard statements/molecular weight. Industrial sources include: tanning, pigment in paint, inks and glass

chromium in chromium(VI) compounds {chromium(VI) oxide}

Worst case CLP species based on hazard statements/molecular weight. Industrial sources include: production stainless steel, electroplating, wood preservation, anti-corrosion agents or coatings, pigments

copper {dicopper oxide; copper (I) oxide}

Reasonable case CLP species based on hazard statements/molecular weight and insolubility in water. Industrial sources include: oxidised copper metal, brake pads, pigments, antifouling paints, fungicide. Worse case copper sulphate is very soluble and likely to have been leached away if ever present and/or not enough soluble sulphate detected.

lead {lead compounds with the exception of those specified elsewhere in this Annex}

There is an insufficient quantity of Chromium VI available to stoichiometrically form Chromate Compounds, as such the next most likely worse-case species has been selected for assessment. The concentration of Chromium VI is noted to be less than the detection limit of the analytical test.

mercury {mercury dichloride}

Worst case CLP species based on hazard statements/molecular weight

nickel {nickel(II) carbonate}

Reasonable case CLP entry as halides, hexacyanoferrate, and sulfate are very soluble, thiocyanate is not likely to be present from industrial uses and is also soluble, insufficient Hexavalent Chromium to form the chromate species. Nickel Carbonate is largely insoluble and present in ceramics and potteries that may be present in Made Ground particularly.

selenium (selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex)

Harmonised group entry used as most reasonable case. Pigment cadmium sulphoselenide not likely to be present in this soil. No evidence for the other CLP entries: sodium selenite, nickel II selenite and nickel selenide, to be present in this soil.

zinc {zinc oxide}

Most likely species of Zinc in soil is as Zinc Oxide or Silicate. Sulfates and Chlorides are very soluble and unlikely to be present. Sulfides are unlikely to be present in this sample. Silicate is not an option. Zinc Oxide is selected as the most likely species.

vanadium {divanadium pentaoxide; vanadium pentoxide}

Only species available

cyanides {salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex}

Harmonised group entry used as most reasonable case as complex cyanides and those specified elsewhere in the annex are not likely to be present in this soil: [Note conversion factor based on a worst case compound: sodium cyanide]

Page 44 of 45 AJ00E-18Q54-MJNRS www.hazwasteonline.com

Appendix C: Version

HazWasteOnline Classification Engine: WM3 1st Edition v1.2.GB - Oct 2021
HazWasteOnline Classification Engine Version: 2024.278.6277.11496 (04 Oct 2024)

HazWasteOnline Database: 2024.278.6277.11496 (04 Oct 2024)

This classification utilises the following guidance and legislation:

WM3 v1.2.GB - Waste Classification - 1st Edition v1.2.GB - Oct 2021

CLP Regulation - Regulation 1272/2008/EC of 16 December 2008

1st ATP - Regulation 790/2009/EC of 10 August 2009

2nd ATP - Regulation 286/2011/EC of 10 March 2011

3rd ATP - Regulation 618/2012/EU of 10 July 2012

4th ATP - Regulation 487/2013/EU of 8 May 2013

Correction to 1st ATP - Regulation 758/2013/EU of 7 August 2013

5th ATP - Regulation 944/2013/EU of 2 October 2013

6th ATP - Regulation 605/2014/EU of 5 June 2014

WFD Annex III replacement - Regulation 1357/2014/EU of 18 December 2014

Revised List of Waste 2014 - Decision 2014/955/EU of 18 December 2014

7th ATP - Regulation 2015/1221/EU of 24 July 2015

8th ATP - Regulation (EU) 2016/918 of 19 May 2016

9th ATP - Regulation (EU) 2016/1179 of 19 July 2016

10th ATP - Regulation (EU) 2017/776 of 4 May 2017

HP14 amendment - Regulation (EU) 2017/997 of 8 June 2017

13th ATP - Regulation (EU) 2018/1480 of 4 October 2018

14th ATP - Regulation (EU) 2020/217 of 4 October 2019

15th ATP - Regulation (EU) 2020/1182 of 19 May 2020

The Chemicals (Health and Safety) and Genetically Modified Organisms (Contained Use)(Amendment etc.) (EU Exit)

Regulations 2020 - UK: 2020 No. 1567 of 16th December 2020

The Waste and Environmental Permitting etc. (Legislative Functions and Amendment etc.) (EU Exit) Regulations 2020 - UK:

2020 No. 1540 of 16th December 2020

GB MCL List - version 1.1 of 09 June 2021

GB MCL List v2.0 - version 2.0 of 20th October 2023

GB MCL List v3.0 - version 3.0 of 11th January 2024

GB MCL List v4.0 - version 4.0 of 2nd March 2024

GB MCL List v5.0 - version 5.0 of 26th June 2024

Appendix X

Date: 14/08/2024

Project No: C4103

Site: Coleg Sir Gar

Photo No: 01

Comments:

WS101: G.L to 2.00m (Left to Right), borehole terminated at 2.00m begl due to refusal.

Date: 14/08/2024

Project No: C4103

Site: Coleg Sir Gar

Photo No: 02

Comments:

WS102: G.L to 2.70m (Left to Right), borehole terminated at 2.70m begl due to refusal.

Date: 14/08/2024

Project No: C4103

Site: Coleg Sir Gar

Photo No: 03

Comments:

WS103: G.L to 2.65m (Left to Right), borehole terminated at 2.65m begl due to refusal.

Date: 14/08/2024

Project No: C4103

Site: Coleg Sir Gar

Photo No: 04

Comments:

WS104: G.L to 3.00m (Left to Right), borehole terminated at 3.00m begl due to refusal.

Date: 14/08/2024

Project No: C4103

Site: Coleg Sir Gar

Photo No: 05

Comments:

WS105: G.L to 3.00m (Left to Right), borehole terminated at 3.00m begl due to refusal.

Date: 14/08/2024

Project No: C4103

Site: Coleg Sir Gar

Photo No: 06

Comments:

WS106: G.L to 3.55m (Left to Right), borehole terminated at 3.55m begl due to refusal.

Date: 15/08/2024

Project No: C4103

Site: Coleg Sir Gar

Photo No: 07

Comments:

WS107: G.L to 3.00m (Left to Right), borehole terminated at 3.00m begl due to refusal.

Date: 15/08/2024

Project No: C4103

Site: Coleg Sir Gar

Photo No: 08

Comments:

WS108: G.L to 2.00m (Left to Right), borehole terminated at 2.00m begl due to refusal.

Date: 15/08/2024

Project No: C4103

Site: Coleg Sir Gar

Photo No: 09

Comments:

WS109: G.L to 3.00m (Left to Right), borehole terminated at 3.00m begl due to refusal.

Date: 13.08.2024

Project No: C4103

Site: Coleg Sir Gar

Photo No: 01

Comments:

SA201: Machine dug trial pit from G.L to 1.90m begl.

Date: 13.08.2024

Project No: C4103

Site: Coleg Sir Gar

Photo No: 02

Comments:

SA201: Spoil from SA201.

Date: 13.08.2024

Project No: C4103

Site: Coleg Sir Gar

Photo No: 03

Comments:

SA202: Machine dug trial pit from G.L to 1.70m begl.

Date: 13.08.2024

Project No: C4103

Site: Coleg Sir Gar

Photo No: 04

Comments:

SA202: Spoil from SA202.

Date: 13.08.2024

Project No: C4103

Site: Coleg Sir Gar

Photo No: 05

Comments:

SA203: Machine dug trial pit from G.L to 1.75m begl.

Date: 13.08.2024

Project No: C4103

Site: Coleg Sir Gar

Photo No: 06

Comments:

SA203: Spoil from SA203.

Date: 13.08.2024

Project No: C4103

Site: Coleg Sir Gar

Photo No: 07

Comments:

SA204: Machine dug trial pit from G.L to 1.70m begl.

Date: 13.08.2024

Project No: C4103

Site: Coleg Sir Gar

Photo No: 08

Comments:

SA204: Spoil from SA204.

Date: 13.08.2024

Project No: C4103

Site: Coleg Sir Gar

Photo No: 09

Comments:

SA205: Machine dug trial pit from G.L to 1.50m begl.

Date: 13.08.2024

Project No: C4103

Site: Coleg Sir Gar

Photo No: 10

Comments:

SA205: Spoil from SA205.

Date: 13.08.2024

Project No: C4103

Site: Coleg Sir Gar

Photo No: 11

Comments:

SA206: Machine dug trial pit from G.L to 1.70m begl.

Date: 13.08.2024

Project No: C4103

Site: Coleg Sir Gar

Photo No: 12

Comments:

SA206: Spoil from SA206.

Date: 13.08.2024

Project No: C4103

Site: Coleg Sir Gar

Photo No: 13

Comments:

SA207: Machine dug trial pit from G.L

to 1.80m begl.

Date: 12.08.2024

Project No: C4103

Site: Coleg Sir Gar

Photo No: 14

Comments:

SA207: Spoil from SA207.

Date: 12.08.2024

Project No: C4103

Site: Coleg Sir Gar

Photo No: 15

Comments:

TP01: Hand dug pit to 0.90m begl.

Date: 12.08.2024

Project No: C4103

Site: Coleg Sir Gar

Photo No: 16

Comments:

TP101: Hand dug pit to 0.90m begl.

Service located at depth, assumed to be 100mm diameter cast iron pipe.

Date: 12.08.2024

Project No: C4103

Site: Coleg Sir Gar

Photo No: 17

Comments:

TP02: Hand dug pit to 1.20m begl.

Date: 12.08.2024

Project No: C4103

Site: Coleg Sir Gar

Photo No: 18

Comments:

TP101: Hand dug pit to 0.90m begl.

Service located at depth, assumed to be 100mm diameter cast iron pipe.

Date: 12.08.2024

Project No: C4103

Site: Coleg Sir Gar

Photo No: 19

Comments:

TP03: Hand dug pit to 0.55m begl.

Date: 12.08.2024

Project No: C4103

Site: Coleg Sir Gar

Photo No: 20

Comments:

TP103: Hand dug pit to 0.55m begl.

Service 'joint' located at depth, assumed to be 25mm diameter lead pipe.

Date: 14.08.2024

Project No: C4103

Site: Coleg Sir Gar

Photo No: 21

Comments:

TP104: Machine dug trial pit from G.L to 2.50m begl.

Date: 14.08.2024

Project No: C4103

Site: Coleg Sir Gar

Photo No: 22

Comments:

TP104: Spoil from TP104.

Date: 14.08.2024

Project No: C4103

Site: Coleg Sir Gar

Photo No: 23

Comments:

TP105: Machine dug trial pit from G.L to 2.50m begl.

Date: 14.08.2024

Project No: C4103

Site: Coleg Sir Gar

Photo No: 24

Comments:

TP105: Spoil from TP105.

Date: 14.08.2024

Project No: C4103

Site: Coleg Sir Gar

Photo No: 25

Comments:

TP106: Machine dug trial pit from G.L to 2.50m begl.

Date: 14.08.2024

Project No: C4103

Site: Coleg Sir Gar

Photo No: 26

Comments:

TP106: Spoil from TP106.

CIVIL | STRUCTURAL | GEOTECHNICAL & ENVIRONMENTAL | TRAFFIC AND TRANSPORT