PHASE II GEO-ENVIRONMENTAL ASSESSMENT REPORT

FINAL

Coleg Sir Gar – Pibwrlwyd Campus

February 2023

CIVIL | STRUCTURAL | GEOTECHNICAL & ENVIRONMENTAL | TRAFFIC AND TRANSPORT

Coleg Sir Gar Pibwrlwyd Campus Pibwrlwyd Lane

Phase II Geo-Environmental Assessment Report

This report was produced by HSP Consulting Engineers Ltd for Gleeds Management Services Ltd as the Phase II Geo-environmental Assessment Report for Coleg Sir Gar - Pibwrlwyd Campus to identify possible areas of contamination and provide an assessment of potential ground related development constraints and to support a feasibility study.

This report may not be used by any person other than Gleeds Management Services Ltd and must not be relied upon by any other party without the explicit written permission of HSP Consulting Engineers Ltd. In any event, HSP Consulting Engineers Ltd accepts no liability for any costs, liabilities or losses arising as a result of the use or reliance upon the contents of this report by any person other than Gleeds Management Services Ltd.

All parties to this report do not intend any of the terms of the Contracts (Rights of Third Party Act 1999) to apply to this report. Please note that this report does not purport to provide definitive legal advice.

Issue & Revision History

Revision	Status	Originated	Checked	Approved	Date
-	FINAL	N. Shafii B.Sc. (Hons), MSc, FGS	K. Murray BSc (Hons), MSc FGS, MIMMM	H.Pratt B.Eng (Hons), C.Eng, F.Cons.E, M.I.C.E, MI Mgt.	16.02.2023
Project Number: HSP2023-C4103-G-GPII-1308				Document Reference: C4103/PII	

This document is available in hard copy, please contact the author to obtain a copy.

HSP Consulting Engineers Ltd, Lawrence House, 6 Meadowbank Way, Nottingham, NG16 3SB **T** 01773 535 555 **W** www.hspconsulting.com

Contents

1.		Introduction	1
	1.1	Background	1
	1.2	Client Brief & Scope	1
	1.3	Report Objectives	1
	1.4	Limitations	2
	1.5	Previous Reports	2
2.		Review of Existing Information & Geoenvironmental Setting	3
	2.1	The Site	3
	2.2	Geology	4
	2.3	Pertinent Site Sensitivity Information	4
3.		Fieldwork & Factual Information	5
	3.1	Exploratory Methods	5
	3.2	In-situ Testing	5
	3.3	Laboratory Testing	5
	3.4	Ground Conditions	6
	3.5	Groundwater Levels	7
	3.6	Ground Gas Monitoring	7
	3.7	Visual and Olfactory Evidence of Contamination	8
4.		Geotechnical Assessment	9
	4.1	Detailed Ground Model	9
	4.2	Earthworks1	10
	4.3	Excavations1	10
	4.4	Foundations1	11
	4.5	Ground Floor Slab1	12
	4.6	Concrete Classification1	12
	4.7	Pavement Design1	12
	4.8	Infiltration Drainage1	12
5.		Environmental Assessment1	14
	5.1	Introduction1	14
	5.2	Assessment of Soil Analysis Results1	15
	5.3	Human Health Mitigation1	15
	5.4	Protection of Controlled Waters1	15

5.5	Ground Gas Risk Assessment	15
5.6	Water Supply	16
	Waste Classification	
5.8	Updated Conceptual Site Model	17
6.	Development Constraints	19
7.	References	20

Appendices

Appendix I - Site Location Plan

Appendix II - Site Test to Fit Plan (Proposed Development)

Appendix III - Exploratory Borehole Logs

Appendix IV - Ground Investigation Layout Plan

Appendix V - Chemical Analysis Results
Appendix VI - Geotechnical Test Results
Appendix VII - Ground Gas Monitoring Results

Appendix VIII - HazWasteOnline™ Waste Classification Results

Executive Summary

HSP Consulting Engineers Ltd has been commissioned by Gleeds Management Services Ltd to provide a Phase II Geo-environmental Assessment report providing information on likely constraints to the development of the site, parameters for design and recommendations for any mitigation measures to support a feasibility study.

The site is located approximately 2.7km south from the town of Carmarthen and is accessed from Pibwrlwyd Lane. The approximate National Grid Reference for the centre of the site is 241198, 218295. The proposed outline development options indicate a three storey building, car parking and games court.

The ground investigation comprised twelve windowless sample boreholes to a maximum depth of 4.00m begl and three cable percussive boreholes to a maximum depth of 6.60m begl. The geology of the site comprises limited Made Ground over superficial Glaciofluvial deposits overlying bedrock deposits of the Tetragraptus Beds.

It is considered conventional strip or pad foundations could be utilised within natural deposits designed to a net allowable bearing pressure of 125kN/m² at 1.00m begl increasing to 160kN/m² at 2.00m begl to limit total settlements to 25mm and differential settlements to acceptable limits. Localised deepening may be required where soft/loose deposits are encountered (WS08: 1.00m) and placed within competent strata.

The screening process for on-site human health receptors show that the GACs for a residential without home grown produce setting were not exceeded. The concentrations of potential contaminants recorded at the site indicates an acceptably low risk and therefore mitigation measures are not required as part of the development.

Ground gas monitoring has been undertaken on four occasions. Comparison of the results with Table 2 of BS8485:2015 + A1:2019 indicates that the site falls into a Characteristic Situation 1, however the site is located within an area where 3% to 5% of the properties are above the action level for radon and therefore basic radon measures will be required for any new development.

The results of sulphate and pH testing carried out on selected soil samples taken during this investigation indicate it is appropriate to adopt a basic Design Sulphate Class of DS-1 together with and Aggressive Chemical Environment for Concrete (ACEC) of AC-1.

The use of plastic (PE) water supply pipes is likely to be suitable if located in natural ground. However, specific targeted testing may be required by the utility provider once the development and water supply pipe route(s) have been confirmed.

The executive summary contains an overview of key findings and conclusions. However, no reliance should be placed on the executive summary until the whole of the report has been read. Other sections of the report may contain information which puts into context the findings noted within the executive summary.

1. Introduction

1.1 Background

This report has been prepared to support a feasibility study for a proposed scheme at the further education site. The assumed development is based upon the 'Site Test to Fit Coleg Sir Gar' May 2022, completed by Scott Brownrigg, provided by the client. The document provides four current options indicating the proposed likely building configuration, car parking and games court. The proposals are included in Appendix II

1.2 Client Brief & Scope

HSP Consulting Engineers Ltd has been commissioned by Gleeds Management Services Ltd to undertake an intrusive ground investigation at the site to investigate the existing ground conditions and provide information on likely constraints to development, preliminary parameters for design and recommendations for any mitigation measures to support a feasibility study.

The report presents the following information:

- a summary of the previous Geo-environmental Reports (Section 1.5 below),
- details of the ground investigation undertaken, and the ground conditions encountered,
- details and results of the geotechnical testing and contamination analysis,
- recommendations for mitigating constraints to the proposed development where appropriate and providing preliminary parameters for foundation design.

The human health risk assessment reported within Section 5 follows the principles given in the Land Contamination Risk Management (LCRM) Guidance.

Where applicable, the fieldwork was undertaken in accordance with BS5930:2015+A1:2020 Code of Practice for Ground Investigations and BS10175:2011+A2:2017 Investigation of Potentially Contaminated Sites.

1.3 Report Objectives

The objectives of this report are to:

- establish the geological and hydrogeological conditions using existing available/published information.
- summarise available information and identify site specific geotechnical and environmental hazards which may place a constraint upon the proposed site use.
- produce an updated Conceptual Site Model identifying potential pollution linkages between sources of contamination, pathways and receptors.

1.4 Limitations

The recommendations made in this report are based on the findings of the intrusive ground investigation undertaken by HSP Consulting Engineers Ltd between the 1st to 7th November 2022.

1.5 Previous Reports

HSP Consulting Engineers Ltd have previously produced a Phase I Desk Study Report for the site, details of which can be found below:

 HSP Consulting Engineers Limited, Coleg Sir Gar - Pibwrlwyd Campus - Phase I Geo-Environmental Desk Study Report, November 2022, Ref: HSP2022-C4103-G-GPI-1111. (Ref 1.)

This phase II geo-environmental assessment should be read in conjunction with the findings of the phase I desk study referenced above.

Previous ground investigation reports covering the area immediately south of the site have been made available. These reports have been reviewed and, where applicable, summarised below within this report:

 Quantum Geotech, Pibwrlwyd Campus, Coleg Sir Gar, Carmarthen – Phase II Ground Investigation Interpretative Report, December 2021, Ref: Q0643/IR.

1.5.1 Summary of Previous Site Investigations

In general the main findings are listed below:

- The ground conditions encountered comprised of anthropogenic Topsoil over deep Made Ground deposits (1.60m begl to >3.70m begl) overlying Alluvium composed of fine deposits with low coarse content. The base of the Alluvium was not proven.
- 'Wet' conditions were observed below 3.40m in WS02 only. Groundwater monitoring revealed groundwater levels between 2.46m to 3.90m begl.
- SPT N Values obtained during the investigation varied between 8 and 50 in the natural deposits.
- There were no exceedances of contaminants recorded against a residential without plant uptake end use threshold guideline values and therefore are not considered to potentially pose a significant risk to end users of the proposed development.
- Traditional foundations are unlikely to be suitable due to deep Made Ground encountered.
- Based on the ground gas monitoring from three visits, the site is classified as Characteristic Situation 2.

2. Review of Existing Information & Geoenvironmental Setting

2.1 The Site

2.1.1 Location

The site is located approximately 2.7km south from the town of Carmarthen and is accessed from Pibwrlwyd Lane. The approximate National Grid Reference for the centre of the site is 241198, 218295. A Site Location Plan is included in Appendix I.

2.1.2 Description

The site is irregular in shape and is approximately 4.11Ha in area. Vehicle access is gained from the south of the site off Pibwrlwyd Lane, which runs south along the length of the site.

The site is split into two distinct zones with a trackway separating the two zones; the east zone comprises an agricultural field which was fallow at the time of the walkover and the west zone is developed.

The developed area is occupied by Coleg Sir Gar and is comprised of eight mixed storey buildings with associated hardstanding and soft landscaped areas. The buildings are mixed CLASP-style buildings with flat roofs or brick and concrete spray with pitched roof. A large car park is present on the northeast section of the developed area and a smaller car park is present centrally south of the developed area. Two storage container and a skip are present in the small car park.

The topography of the site as observed on Google Earth Aerial Imagery was from 25m AOD in the north sloping to 13m AOD in the south of the site.

The site boundaries are comprised of mixed metal fencing, mature trees and hedgerow.

No visual or olfactory evidence of contamination was identified during the walkover.

2.1.3 Surrounding Land Use

The main features of interest identified are:

North: Agricultural fields. East: Agricultural fields.

South: Coleg Sir Gar and residential housing.

West: A484, residential housing and agricultural fields.

2.1.4 Proposed End Use

Proposed outline development options are provided within the 'Site Test to Fit' provided in Appendix II. Proposed outline development options are provided within the 'Site Test to Fit' provided in Appendix II. The proposals include a three storey building, carparking and games court.

2.2 Geology

2.2.1 Made Ground

The BGS mapping does not indicate any Made Ground on the site.

2.2.2 Superficial Deposits

BGS mapping shows the site is underlain by Till in the east of the site and Glaciofluvial Deposits in the west of the site. Till is described as Diamicton. Glaciofluvial Deposits are characterised by sand and gravels.

2.2.3 Bedrock Geology

BGS bedrock mapping indicated the site is underlain by Tetragraptus Beds - Mudstone of the Ordovician Period. No description has been provided by the BGS.

2.3 Pertinent Site Sensitivity Information

Based on the information collated for the desk study, the geo-environmental setting of the site is summarised as follows:

- The first edition mapping shows that the site as open fields until the late 1950s where the
 western section of site was occupied by Farm Institute. From 1969, the Farm Institute was
 no longer shown, having been replaced by a college until present day. The eastern area of
 the site has remained as agricultural land.
- The surrounding site area is predominantly rural with several isolated buildings from earliest mapping with a railway track present 90m west of the site. Limited development in the form of the expansion of buildings 20m south of the site was identified from 1969. A tank and filter bed were also recorded from 1969 to 1993.
- The site is underlain by superficial deposits of Till in the east and Glaciofluvial Deposits in the west. The bedrock geology of site is underlain by Tetragraptus Beds mudstone.
- The site is not within a flood zone. There is a low risk to the site from groundwater flooding and negligible risk from surface water flooding. There is a negligible risk to the site from flooding from rivers/sea.
- Till is described as Secondary Undifferentiated Aquifer and the Glaciofluvial Deposits are designated as a Secondary A Aquifer. The bedrock geology of Tetragraptus Beds are classified as a Secondary B Aquifer.
- The eastern site area is within an area where 3% to 5% of the properties are above the action level for Radon. The western half of the site is located within an area where 1% to 3% of the properties are above the action level for Radon. Basic radon protection measures will be required for any new development on the site.
- There is a record of active or recent landfill identified as Plbwrlwyd Inert Landfill which is located 86m south of the site. There are two records of historical landfills within 250m radius of the site, the closest relates to Pibwrlwyd Farm 123m north of the site.

3. Fieldwork & Factual Information

The site work was carried out between 1st to 7th November 2022. Where applicable, the fieldwork was undertaken in accordance with BS5930:2015 + A1:2020 Code of Practice for Ground Investigations (Ref. 6) and BS10175:2011+A2:2017 Investigation of Potentially Contaminated Sites (Ref. 8).

The exploratory holes were positioned to provide general coverage across the site of proposed development to provide information for foundation design and obtain representative soil samples for geotechnical and geo-environmental analysis.

3.1 Exploratory Methods

The exploratory methods are detailed in the table below.

Table 1 – Exploratory Methods

Туре	Quantity Maximum Depth (m)		Details	
Windowless Sampling Borehole	12	4.00	WS1 to WS12	
Cable Percussive Borehole	4	6.60	CP01, CP01A, CP02 to CP03	

The exploratory holes were logged and sampled by an Engineer from HSP Consulting Engineers Ltd and the logs are presented in Appendix III. The exploratory hole locations are shown on the Ground Investigation Layout Plan presented in Appendix IV.

Fragmentary bulk disturbed and undisturbed samples were recovered from materials revealed within all the exploratory holes. Geo-environmental samples, placed in plastic tubs and glass jars supplied by the laboratory, were also obtained specifically for chemical analysis. The samples were taken to UKAS accredited laboratories for further examination and testing.

3.2 In-situ Testing

3.2.1 Standard Penetration Tests

Standard Penetration Tests (SPTs) were carried out at 1.00m intervals in the windowless sample and cable percussive boreholes to 5.00m depth, and at 1.50m intervals thereafter in the cable percussive boreholes. The SPTs were undertaken in accordance with EN ISO 22476-2 2005: A1 2011 and the results are included on the appended borehole logs (Appendix III).

3.3 Laboratory Testing

The laboratory testing schedules were prepared by HSP Consulting Engineers Ltd.

3.3.1 Geotechnical Testing

Geotechnical testing has been scheduled to be undertaken by a UKAS accredited laboratory as part of the works at the site:

Particle size distributions (PSD)

- Natural Moisture Contents
- Plasticity Index

The laboratory testing is being undertaken by Professional Soils Laboratory (UKAS accredited, laboratory No.4043) and Apex Testing Solutions (UKAS accredited, laboratory No. 7771) in accordance with BS1377:1990 using calibrated equipment specifically for the British Standard. The results are included within Appendix VI.

3.3.2 Chemical Analysis

The geo-environmental samples retained specifically for chemical analysis were stored in cooled containers until delivery to the laboratory by courier.

Chemical analysis was scheduled on twenty soil samples for the presence of a selected suite of potential contaminants as outlined in the tables below:

Table 2a - Chemical Analysis

Table Za – Chemical Analysis			
Exploratory Hole Location & Depth (m)	Sample Description	Exploratory Hole Location & Depth (m)	Sample Description
WS01 0.40m	MADE GROUND 1, 2, 3	WS09 0.90m	CLAY ³
WS02 0.30m	MADE GROUND ^{1, 2, 3, 4}	WS09 3.90m	MUDSTONE 3
WS02 1.70m	CLAY ³	WS10 0.10m	MADE GROUND 1, 2, 3, 4
WS03 0.40m	CLAY 1, 2, 3	WS10 0.60m	CLAY 1, 2, 3
WS04 0.40m	CLAY ^{1, 2, 3}	WS10 2.90m	CLAY ³
WS04 1.80m	CLAY ³	WS11 0.20m	MADE GROUND 1, 2, 3, 4
WS06 0.40m	CLAY 1, 2, 3	WS11 0.70m	CLAY 1, 2, 3
WS06 1.80m	SAND ³	WS11 1.80m	CLAY ³
WS07 0.30m	CLAY 1, 2, 3, 4	WS12 0.40m	CLAY 1, 2, 3
WS07 0.90m	GRAVEL 3	WS12 0.80m	CLAY 1, 2, 3

¹ HSP Standard Suite, ² Organic Matter, ³ BRE Sulphate Suite, ⁴ Asbestos Identification

Table 2b - HSP Standard Chemical Analysis Suite

Metals	Cadmium	Chromium (III & VI)	Copper	
	Lead	Mercury	Nickel	
	Zinc	Antimony	Vanadium	
Semi Metals and Non-metals	Arsenic	Boron	Selenium	
Others	рН	Organic Matter	LOI	
Inorganic Chemicals	Cyanide	Sulphate	Sulphide	
Organic Chemicals	PAH (US EPA 16)	TPH (CWG)	Phenol	

The contamination analysis was carried out by Chemtest Ltd (UKAS accredited, laboratory No. 2183) during the period 9th November to 6th December 2022. The results are presented in Appendix V.

3.4 Ground Conditions

3.4.1 Published Geology

The published geology indicates the site is underlain by Glaciofluvial deposits in the west of the site and Glacial Till in the east of the site. The site is underlain undifferentiated bedrock deposits of the Tetragraptus Beds as described in section 2.2.2 and 2.2.3 above.

3.4.2 Ground Conditions on site or General Geology & Revealed Strata

The exploratory hole data generally confirms the published information with undifferentiated deposits of the Glaciofluvial deposits and Tetragraptus Beds as being encountered in the exploratory locations. No Glacial Till deposits were encountered as the investigation was focused in the western area of site. The strata generally comprises:

Table 3 – Encountered Ground Conditions

	Strata	Depth (mbegl)	Thickness (m)	Description
		G.L – 0.15	0.15	MADE GROUND comprising asphalt concrete.
genic	MADE GROUND	G.L – 0.50	0.50	MADE GROUND comprising grey gravel.
Anthropogenic		0.09 – 0.50	0.41	MADE GROUND comprising dark grey black sandy gravelly silty clayey fill.
	TOPSOIL	G.L - 0.30	0.30	Grass overlying brown sandy slightly gravelly clay with occasional rootlets.
_		0.15 – 3.70	3.50	Soft to firm brown/light grey/light yellowish brown mottled grey silty sandy gravelly CLAY. Occasional cobble present.
Superficial	GLACIOFLUVIAL DEPOSITS	0.50 – 2.00	1.10	Loose to medium dense light brown mottled grey slightly clayey very gravelly SAND.
ง		0.50 - 0.90	0.20	Dark grey to black slightly sandy GRAVEL. Gravel is mudstone.
×		0.40 - 6.50	0.60	Very weak to weak weathered dark grey/dark grey brown MUDSTONE.
Bedrock	TETRAGRAPTUS BEDS	3.50 – 6.30	2.00	Stiff to very stiff brown to dark grey sandy gravelly CLAY.
		6.50 – 6.60	0.10	Dense dark grey sandy clayey GRAVEL.

3.5 Groundwater Levels

During the advancement of the window sample boreholes, groundwater was encountered at 1.00m begl in WS11. No groundwater was encountered in the cable percussive boreholes.

Groundwater monitoring has been undertaken on six occasions and groundwater has been recorded between 1.52m begl to 3.90m begl.

3.6 Ground Gas Monitoring

Dual use gas and groundwater monitoring installations were constructed within three of the boreholes at the site during ground investigation (CP02, WS09 and WS12). Each well has been constructed using 50mm diameter HDPE pipe. All of the borehole installations have a 6mm pea gravel surround to the slotted pipe with a bentonite seal above and a gas tap. The covers are cemented flush with ground level and are round lockable stopcock covers.

HSP Consulting uses a GFM 430 Gas Analyser. Prior to its use a calibration check can be performed against gas readings in air. It is recommended that this check is undertaken once on each day the analyser is used. Annual calibration is undertaken on the unit and a copy of this certificate has been included within Appendix VII.

The results of the ground gas monitoring are discussed in Section 5.5 below.

3.7 Visual and Olfactory Evidence of Contamination

Within the shallow Made Ground deposits, anthropogenic materials were recorded which comprised of concrete and ballast.

No visual and olfactory evidence of contamination was noted in the exploratory holes during the ground investigation.

4. Geotechnical Assessment

4.1 Detailed Ground Model

For the purpose of this foundation assessment the information gained from the window sample and cable percussive boreholes were utilised. The borehole logs are presented in Appendix III.

4.1.1 Made Ground

Shallow Made Ground was encountered in areas where development had occurred. These locations generally comprised asphalt concrete and/or grey gravel cover over dark grey black/grey sandy gravelly silty clayey fill to a maximum depth of 0.50m begl. The gravels were composed of ballast, sandstone, mudstone and asphalt concrete.

The base of all Made Ground deposits were penetrated.

4.1.2 Topsoil

Topsoil was encountered in areas of soft landscaping and comprised of grass overlying brown sandy slightly gravelly CLAY with occasional rootlets to a maximum depth of 0.30m begl.

4.1.3 Glaciofluvial deposits

Superficial Glaciofluvial deposits were encountered in all boreholes. A soft to firm brown/light grey/light yellowish brown mottled grey silty CLAY with variable coarse content was encountered underlying any Made Ground or topsoil and proved to a maximum depth of 3.70m begl. The gravels were composed of sandstone, mudstone, siltstone, shale and flint.

In WS06 a loose to medium dense brown SAND was encountered from 0.50m to 2.00m begl, interbedded with clayey slightly sandy mudstone gravel. A loose light brown mottled grey slightly clayey very gravelly SAND was encountered in WS07, WS08 and WS11 from 0.90m to 2.00m begl.

4.1.4 Tetragraptus Beds

Bedrock deposits of the Tetragraptus Beds were encountered below the Glaciofluvial deposits in CP01A, CP02, CP03, WS04, WS05, WS09 and WS12. The Tetragraptus beds were encountered as very weak to weak weathered dark grey MUDSTONE interbedded with stiff to very stiff brown to dark grey sandy gravelly CLAY from 0.40m begl in WS05 in the northeast and from 3.70m begl in WS09 in the south. The base of the deposits were proven to the base of the boreholes (maximum depth 6.60m begl).

4.1.5 In-situ Testing and Assessment

A series of Standard Penetration Tests (SPT's) undertaken within the boreholes have returned SPT 'N' values of 7 to 50 at 1.00m depth and 14 to 50 at 2.00m depth. The following table summarises the N values at depth across the site within the natural strata.

Table 4a - SPT N Values - Window Sampler Boreholes

Depth (m)	Range of 'N' Values	Mean 'N' Value	Description
1.00	7 – 33	16	CLAY
	50	50	MUDSTONE
2.00	14 – 43	28	CLAY
	17 - 19	18	SAND
	50	50	MUDSTONE
3.00	38 – 50	44	CLAY
	16 – 50	33	MUDSTONE
4.00	17	17	CLAY
	50	50	MUDSTONE
5.00	28	28	CLAY
6.50 - 60	50	50	MUDSTONE

Twelve plasticity index and fourteen moisture content tests have been undertaken in the laboratory on disturbed samples of the fine deposits from the window sampler and cable percussive boreholes. The results indicate compliance with the definition of soils of low to moderate plasticity (CL - Cl), one sample has recorded high plasticity (CH) after the classification system of BS5930: 2015 + A1:2020. These soils are considered to be low to medium volume change potential (VCP) in accordance with the National House Building Council (NHBC) Standards, Chapter 4.2: 2007.

One Particle Size Distribution test has been undertaken to confirm the visual description and engineering behaviour of the soils. The results are presented within Appendix VI.

4.2 Earthworks

Proposed levels for the development are currently unknown, but it is considered that significant earthworks is likely to be required to create a level development platform. Any Made Ground or topsoil arisings generated on site are unlikely to be suitable as engineered fill. It is likely that natural near surface soil arisings generated on site will be suitable for use as engineered fill on site, subject to appropriate testing and assessment.

Should materials prove to be suitable, placement and compaction would need to be strictly controlled and supervised. Project programming should consider the 'earthworks window' (prevailing dry & warm climatic conditions) as the soil materials will be susceptible to softening during periods of wet weather and will be easily damaged by site traffic and deterioration at times of heavy rainfall.

4.3 Excavations

Excavations to proposed formation level for foundations and infrastructure should be feasible using standard excavation plant and equipment. Should deeper foundations or infrastructure be required a breaker may be required to achieve the required depth due to shallow competent bedrock encountered at WS04, WS05, CP02 and CP03.

Random and potentially severe falls should be anticipated from the faces of near vertically sided unsupported excavations carried out at the site. Where personnel are required to enter

near vertically sided excavations, it is considered that full support should be provided to the full depth of all excavations.

It is recommended that all support systems are continually assessed by fully trained or experienced personnel.

Groundwater was only encountered during the advancement of the boreholes at 1.00m begl in WS11. For further information, please refer to section 3.5 of this report. Should groundwater entries be encountered at the site during groundwork operations, traditional sump and pump dewatering should be sufficient. However, it should be noted that groundwater levels may vary due to seasonal variations or other effects.

4.4 Foundations

Proposed outline development options are provided within the 'Site Test to Fit' provided in Appendix II. Four options are shown which indicate the proposed three storey building configuration will be located in the north east or south east of the site.

For the purpose of this foundation assessment, the information gained from the window sample and cable percussive boreholes have been utilised and the lowest SPT 'N' value has been used to calculate the net allowable bearing pressure. Should development plans alter, an Engineer from HSP should be consulted and the foundation assessment revised.

Based on the ground conditions encountered, the general downward succession was identified as shallow Made Ground overlying varying depth of superficial Glaciofluvial deposits (proved to depths of 0.4m begl (WS05) and 3.7m begl (WS09), overlying bedrock deposits of the Tetragraptus beds comprising clay/mudstone. The topography of the site varies being at a higher elevation in the northeast, sloping down to the southwest.

All foundations will need to be taken below any topsoil and Made Ground materials as these are not considered a suitable founding stratum.

It is considered conventional strip or pad foundations could be utilised within the natural deposits designed to a net allowable bearing pressure of 125kN/m² at 1.00m begl increasing to 160kN/m² at 2.00m begl to limit total settlements to 25mm and differential settlements to acceptable limits. Localised deepening may be required where soft/loose deposits are encountered (WS08: 1.00m) and placed within competent strata.

Where fine-grained and granular deposits are encountered at the base of any footings, consideration should be given to the inclusion of mesh reinforcement at the top and bottom of foundations to reduce the potential for differential settlements to occur.

Foundations (and ground floor slabs) should be designed in accordance with NHBC Standards Chapter 4.2 Building near Trees (Ref. 9) in accordance with the requirements for soils of medium-volume change potential.

It should be noted that design loadings have not been provided at this stage. However proposed buildings shown on indicative drawings are shown to be three storey and therefore loads are likely to exceed the ABP provided above and an alternative foundation solution such as piling would need to be considered where higher loads are required. Any piling solution would need to be designed and warranted by a specialist subcontractor. It is recommended the foundation options are reviewed once the layout and loadings have been finalised.

4.5 Ground Floor Slab

At this stage it is anticipated a cut/fill exercise will be required to accommodate any new build and in conjunction with any earthworks reprofiling a ground bearing floor slab could be considered providing granular material is placed beneath the floor slab and compacted in layers in accordance with any engineered specification. Alternatively, a suspended floor slab could be utilised. Where the structures are to be located within the influencing zone of existing or future trees, they should be designed in accordance with NHBC guidance Chapter 4.2.

Basic radon protection measures will need to be incorporated in any floor slab design in accordance with BR 211, BRE 2015 (ref 23).

4.6 Concrete Classification

The results of sulphate and pH testing carried out on selected soil samples taken during this investigation have been compared with the recommendations outlined in BRE Special Digest 1, Part 1: 2005.

The guidelines given in BRE Special Digest 1 are based upon a site classification relating to its previous usage. It is considered appropriate to define this site as a 'natural ground' location with mobile groundwater for the purposes of concrete classification.

On the basis of the above, it is considered appropriate to adopt a basic Design Sulphate Class of DS-1 together with and Aggressive Chemical Environment for Concrete (ACEC) of AC-1.

4.7 Pavement Design

No testing has been undertaken at this stage. It is recommended that in-situ CBR testing should be undertaken at finished levels when proposed development plans have been finalised. However, TRL DCP probing was undertaken during the previous investigation by Quantum Geotech for the area south of the site. The testing completed in the neighbouring site returned CBR values of 1%.

4.8 Infiltration Drainage

Infiltration testing has not been undertaken as part of this investigation. The ground conditions at shallow depths have recorded predominantly fine grained deposits and therefore the use of infiltration drainage for the disposal of surface water is likely to be limited. In addition, soakaway testing in accordance with BRE 365 was completed during the previous

investigation by Quantum Geotech with results indicating soakaway drainage would not be suitable for the site.

5. Environmental Assessment

5.1 Introduction

The approach to the human health risk assessment reported here follows the principals given in the Land Contamination Risk Management (LCRM) Guidance, https://www.gov.uk/government/publications/land-contamination-risk-management-lcrm i.e. application of the following assessment hierarchy:

- Tier 1 risk screening by establishment of potential pollutant linkages, i.e. the preliminary conceptual site model (PCSM), or
- Tier 2 generic quantitative assessment using generic assessment criteria (GACs) that represent 'acceptably low' risk, or
- Tier 3 quantitative risk assessment using site specific assessment criteria (SSACs) that represent 'unacceptable risk', or where generic assessment criteria are not available, or they are not applicable to the CSM.

The results of laboratory analysis have been screened against GACs including the Defra Category 4 Screening Levels (C4SL) and LQM and CIEH S4ULs for Human Health Risk Assessment (Copyright Land Quality Management Limited reproduced with permission; Publication Number S4UL3180. All rights reserved). (Refs 10 and 11 respectively).

In the absence of a standard scenario for an educational environment the standard exposure scenario of residential without home grown produce has been used to identify potential exposure pathways for human health receptors. Controlled water, flora and fauna and property receptors have also been included within the CSM. Our Tier 2 HHRAs for educational sites are screened against the GACs representative of minimal risk for residential without home grown produce end use, we believe this to be appropriate based on the precautionary principle the LCRM guidance advocates.

It should be noted that organic contamination (PAH, TPH and BTEX) have been screened against the GAC for 1% Soil Organic Matter (SOM).

Where possible the assessment of PAHs is undertaken using the surrogate marker approach; recommended by Health Protection Agency (2010) guidance, providing the PAH profile is sufficiently similar to the coal tars tested by Culp et al (1998). Where PAH profile is not sufficiently coal tar like the TEF method is adopted using the LQM and CIEH S4ULs. Prior to assessment a PAH profile is generated for all samples analysed for PAH using the LQM PAH Profiling Tool v1.3, the graphical output is presented in Appendix V. For this site WS02 at 0.30m begl has been analysed using the LQM PAH Profiling Tool, all the remaining samples have been screened using the TEF method due to all the remaining PAHs being below the limit of detection (LOD).

5.2 Assessment of Soil Analysis Results

Twenty samples, as detailed in section 3.3.2, were scheduled for analysis from the development area. Twelve of these samples were scheduled to provide a basis for characterising the soils to outline the potential impacts on human health and any environmental receptors from any contamination found.

The screening process for on-site human health receptors show that the GACs for a residential without home grown produce setting were not exceeded.

Four shallow soil samples were submitted for an asbestos screen and identification. No asbestos has been identified.

5.3 Human Health Mitigation

The concentrations of potential contaminants recorded at the site indicates an acceptably low risk and therefore mitigation measures are not required as part of the development.

Should any obvious evidence of unexpected contamination be encountered during the redevelopment works it should be reported to HSP so that an inspection can be made and appropriate sampling and assessment work be carried out.

Appropriate health and safety precautions should be adopted during any excavation works to avoid exposure to potentially contaminated soils and dust.

The approval of the local Environmental Health Officer should be sought with respect to the soil contamination assessment and mitigation proposals.

5.4 Protection of Controlled Waters

Given no presence of contaminants at elevated levels within the soils, it is considered unlikely that the soils on the site pose a significant risk to controlled waters.

5.5 Ground Gas Risk Assessment

Ground gas concentrations have been monitored on six occasions in order to obtain an indication of the ground gas regime at the site.

The results of monitoring indicate that methane has not been recorded above the limits of detection. Carbon dioxide has been recorded at concentrations up to 3.0% by volume in air. Steady state gas flows have not been recorded above the limits of detection. From the results above, the maximum steady state gas screening value for the site is 0.003 l/hr.

The results have been assessed in line with the guidance provided in BS8485:2015 + A1:2019 Code of Practice of the design of protective measures for methane and carbon dioxide ground gas for new buildings (Ref 14) and CIRIA Document C665 'Assessing Risks Posed by

Hazardous Ground Gases to Buildings' (Ref 15). Comparison of these results with Table 2 of BS8485:2015 + A1:2019 indicates that the site falls into a Characteristic Situation 1.

The UK radon map indicates the site is located within an area where 3% to 5% of the properties are above the action level for radon and therefore basic radon measures will be required for any new development on the site in accordance with BR 211 (ref 23).

Depleted oxygen levels were observed within a number of the boreholes during the monitoring. This poses a risk of asphyxiation to construction and maintenance workers in confined spaces such as excavations or manhole chambers. A confined spaces risk assessment should be carried out prior to working in any buried structures or excavations.

The results of the ground gas monitoring are presented in Appendix VII.

5.6 Water Supply

Environmental testing for the site should be compared to the following document in order to assess the most appropriate pipe material that should be used upon the site for mains water supply:

'Water UK Contaminated Land Assessment Guidance (January 2014)'. (Ref. 20).

Testing to the Water UK Suite is beyond the scope of the investigation and the report. However, it is noted that natural ground occurs at shallow depths and there is no historic evidence from the Desk Study, nor measured indicative organic contamination (e.g., petroleum-based hydrocarbons, phenols, etc.), that is likely to be detrimental to the use of plastic water supply pipes. The use of plastic (PE) water supply pipes is likely to be suitable if located in natural ground. However, specific targeted testing may be required by the utility provider once the development and water supply pipe route(s) have been confirmed. Water supply pipes should be placed at a minimum depth of 0.75m below the finished ground level(s) (to the top of the piping).

5.7 Waste Classification

Waste Assessment and Classification is required to be carried out as per the Environment Agency Document "Waste Classification: Guidance on the Classification and Assessment of Waste (v1.2.GB 2021) – Technical Guidance WM3" (Ref. 22).

The results of the chemical testing have been assessed using web-based software for classifying hazardous waste, HazWasteOnlineTM. The materials tested are likely to be classified as non-hazardous waste. The results are included in Appendix VIII.

Please note the above classification provides an indication of how the material should be classified for removal off site; however, this should be used at your approved waste handler's discretion and further testing may be required prior to any offsite disposal.

5.8 Updated Conceptual Site Model

The PCSM and Summary of plausible pollutant linkages was produced by undertaking a Source-Pathway-Receptor analysis of the site using readily available online information and previous reports. Based on the findings of this and the site investigation the updated conceptual site model has been updated and is presented in the table below.

Table 5 - Updated Conceptual S						
Source	Pathway	Receptor	Consequence	Probability	Risk	Comments
	P1: Human uptake pathways	R1: End Users	Mild	Unlikely	Very Low	Concentrations of contaminants of concern are below the relevant GACs within the near surface deposits sampled across
	F1. Human uptake patriways	R2: Construction and Maintenance workers	Mild	Unlikely	Very Low	the site and therefore the risk is considered to be VERY LOW.
On site S1: Historical and	P2: Horizontal and vertical migration of mobile contaminants through potentially permeable soils. P4: Migration along preferential pathways (man-made) P5: Overland flow/surface runoff	R3: Controlled Waters: Groundwater and Surface water	Mild	Unlikely	Very Low	The potential sources identified 'on-site' are limited and the ground investigation has confirmed that no exceedances have been identified above the relevant GACs. The risk to Controlled Waters is considered to be VERY LOW.
Contemporary land use: Made Ground associated with development of the site. S2: Historical land use: Orchard.	P3: Direct Contact P4: Migration along preferential pathways (man-made) P5: Overland flow/surface runoff	R4: Property, services and substructures	Mild	Unlikely	Very Low	The natural soils may contain sulphates that present a risk to buried concrete. The Glaciofluvial deposits and Tetragraptus Beds are classified as a Design Sulphate Class of DS-1 together with an Aggressive Chemical Environment for Concrete (ACEC) of AC-1 has been recorded. The risk is considered to be VERY LOW. The risk to water supply pipes (due to lack of measured indicative organic contamination (petroleum hydrocarbons, phenols) is considered low within natural ground. Provided that the correct construction materials are used the risk remains VERY LOW.
	P7: Root uptake.	R6: Proposed Flora and fauna	Mild	Unlikely	Very Low	It is not known if areas of soft landscaping are proposed. Results returned from the soil sampling show no exceedances of generic assessment criteria and as such the risk posed from the soil can be classified as VERY LOW. Site won soils (topsoil/subsoil) may be suitable as a planting medium but would need to be compliant with BS:3882:2015 and have the appropriate testing to confirm suitability. The risk of uptake to proposed flora and fauna is considered to be VERY LOW.
Off site	P1: Human uptake pathways	R1: End Users	Mild	Unlikely	Very Low	
S3: Historical and Contemporary Land Use: Tank and Filter Beds.	P2: Horizontal and vertical migration of mobile contaminants through potentially permeable soils and rocks.	R3: Controlled Waters: Surface Water, Groundwater	Mild	Unlikely	Very Low	Concentrations of contaminants of concern are below the relevant GACs within the near surface deposits sampled across the site and therefore the risk is considered to be VERY LOW.
On and Off Site S4: Ground Gases from made ground S5: Ground Gases from historical and recent landfill	P6 : Vertical and lateral migration of ground gases and/or vapour.	R1: End Users	Mild	Low	Low	Ground gas monitoring has confirmed a CS1 classification for the site as outlined in BS8485:2015+A1 2019, however basic radon protection measures are required for any new build and will need to be accommodated in accordance with BR 211. Providing basic radon protective measures are adopted the risk is considered to be LOW

6. Development Constraints

Ground gas monitoring has been undertaken on four occasions. Comparison of the results with Table 2 of BS8485:2015 + A1:2019 indicates that the site falls into a Characteristic Situation 1, however the site is located within an area where 3% to 5% of the properties are above the action level for radon and therefore basic radon measures will be required for any new development.

7. References

- 1. HSP Consulting Engineers Limited, Coleg Sir Gar Pibwrlwyd Campus Phase I Geo-Environmental Desk Study Report, November 2022, Ref: HSP2022-C4103-G-GPI-1111
- 2. BRITISH GEOLOGICAL SURVEY. 1967. Carmarthen, Map Sheet 229. Bedrock and Superficial Deposits. 1:63 360 (Keyworth, Nottingham: British geological Survey).
- 3. British Geological Survey Lexicon Search http://www.bgs.ac.uk/lexicon/
- 4. Department of the Environment Industry Profiles.
- 5. Site Investigation in Construction, Volume 3, Specification for Ground Investigation 2nd Edition.
- 6. BS 5930:2015 +A1:2020 Code of Practice for Site Investigations.
- 7. BS 8576:2013 Guidance on investigations for ground gas. Permanent gases and Volatile Organic Compounds (VOCs)
- 8. BS10175:2011 +A2:2017 Investigation of Potentially Contaminated Sites Code of Practice.
- 9. NHBC Standards, Chapter 4.2, Building near trees.
- 10. Department for Environment, Food and Rural Affairs and Contaminated Land: Applications in Real Environments (CL:AIRE) (December 2013). SP1010: Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination.
- 11. Nathanail, C.P., McCaffrey, C., Gillett, A.G., Ogden, R.C. and Nathanail, J.F. 2015. The LQM/CIEH S4ULs for Human Health Risk Assessment. Land Quality Press, Nottingham.
- 12. BRE Special Digest 1:Concrete in Aggressive Ground, 2005, Building Research Establishment.
- 13. CL:AIRE The definition of Waste: Development Industry Code of Practice, 2008.
- 14. BS8485:2015 + A1:2019 Code of Practice of the design of protective measures for methane and carbon dioxide ground gas for new buildings
- 15. CIRIA C665 'Assessing Risks Posed by Hazardous Ground Gases to Buildings'
- 16. Department for Environment, Food and Rural Affairs and Contaminated Land: Applications in Real Environments (CL:AIRE) (December 2013). SP1010: Appendix E Provisional C4SLs for Benzo(a)pyrene as a surrogate marker for PAHs.
- 17. www.environment-agency.gov.uk
- 18. HMSO, Water Supply (Water Quality) Regulations, 2002
- 19. www.hazwasteonline.com/
- 20. Water UK Contaminated Land Assessment Guidance, 2014
- 21. Driscoll, R. The influence of vegetation on the swelling and shrinking of clay soils in Britain, Geotechnique, Vol. 33, pp 93 105
- 22. Waste Classification: Guidance on the Classification and Assessment of Waste (v1.2.GB 2021) Technical Guidance WM3
- 23. BR 211, BRE 2015 Radon 'Guidance on protective measures for new buildings'

Appendix I

DO NOT SCALE

- Red Line Boundary

Lawrence House, Meadowbank Way, Eastwood, Nottingham, NG16 3SB Tel: 01773 535 555 Fax: 0870 600 6091

Gleeds Management Ltd

PROJECT: Coleg Sir Gar – Pibwrlwyd Campus

Site Location Plan

L	
SCALE@SIZE :	ISSUE:
NTS	FINAL
DESIGN/DRAWN: NS	OCT 2022
DD O JECT N	D.D. ALLUTALIO, AL

C4103

DRAWING No: 502

© HSP Consulting Engineer Ltd © Crown Copyright.

Appendix II

Site Test to Fit - 3 Storey Scenario - External facilities

Scale 1:1000 @A1

Key:

Road leading to the entrance of the proposed building and car park

Main entrance and drop off point

Drop off point for servicing

Proposed games courts location

Proposed building

Opportunity for future expansion

Proposed car park location with approx. 128 spaces

Pedestrian Access

Vehicle Access

Potential pedestrian access

Potential temporary car park

Site Test to Fit - 3 Storey Scenario

Scale 1:1000 @A1

Proposed building Opportunity for future expansion Potential temporary car park Proposed car park location with approx. 128 spaces

Proposed games courts location

Key:

Site Weaknesses:

- Significant level changes within the topography.
- The topography of the site needs to be considered and retaining walls will potentially be introduced.

Site Strengths:

- More connected with the southern part of the campus due to proximity.
- Better access from the main road Pibwrlwyd Lane.
- Close proximity to the potential temporary car park.
- Establishes a better relationship with the campus.

Site Test to Fit - 3 Storey Scenario

Scale 1:1000 @A1

Proposed building Opportunity for future expansion Potential temporary car park Proposed car park location with approx. 128 spaces

Proposed games courts location

Key:

Site Weaknesses:

- The area is far from the southern part of the campus.
- There is no connection between the northern and southern part of the campus.
- Little opportunity for the overall campus hub.
- Does not relate to anything.
- The games courts are dislocated from the main campus.

Site Strengths:

- The flattest area of the site.
- Phasing demolition strategy.

Site Test to Fit - 3 Storey Scenario

Scale 1:1000 @A1

Proposed building

Opportunity for future expansion

Potential temporary car park

Proposed car park location with approx. 128 spaces

Proposed games courts location

If the building was to be moved as far as possible to the western part of the area

Potential early demolishing of the building

Extension of the existing car park

<--> Connection between the South and North part of the campus

PROPOSED BUILDING **SECTION EE**

Site Weaknesses:

- Significant level changes within the topography.
- The topography of the site needs to be considered and retaining walls will potentially be introduced.

Site Strengths:

- More connected with the southern part of the campus due to proximity.
- Better access from the main road Pibwrlwyd Lane.

• Close proximity to the potential temporary car park.

- Establishes a better relationship with the campus.
- Linear building following the contours of the site requires less excavation into the hill.

Appendix III

	1 0						Borehole N	0.
11 5	ρ			Boi	reho	ole Log	CP01	
consul	ting					3.3 _ 3	Sheet 1 of	1
Project Name	e: Coleg Sir Ga	ır Pibwrlwyd Campus	Project No. C4103		Co-ords:	241169.79 - 218254.74	Hole Type CP	;
Location: Pibwrlwyd Lane, Carmarthen				Level:	15.91	Scale 1:50		
Client:	Gleeds Mana	agement Services Ltd			Dates:	03/11/2022 - 03/11/2022	Logged By LAB	y
Well Water Strikes		and In Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description		
Strikes	Depth (m) Ty	ype Results	0.15	15.76		MADE GROUND - Grey gravel. Gra	vel is sub	
			0.40	15.51		angular of limestone and ballast. Soft light brown slightly silty slightly gravelly CLAY with occasional cobb Sand is fine to medium. Gravel is fir sub angular of mudstone, sandstone siltstone. Cobbles are sub angular of (Possible reworked). End of borehole at 0.40 m	sandy le content. ne to coarse	1 1 2 3 4 1 5 6 7 7 1 1 1 1 1 1 1 1
Remarks								9

- Remarks

 1. No groundwater was encountered during the drilling process.

 2. Borehole was terminated at 0.40m depth due to a service pipe being encountered.

 3. Borehole was backfilled with arisings.

h	C	n							Borehole N	lo.
	5	þ				Bo	reho	ole Log	CP01A	١.
con	sult	ing							Sheet 1 of	
Projec	t Name:	Coleg Sir (Gar Pil	ourrhand ('ompute	Project No. C4103		Co-ords:	241169.75 - 218255.13	Hole Type CP	9
Locati	on:	Pibwrlwyd	Lane,	Carmarthen			Level:	15.93	Scale 1:50	
Client: Gleeds Management Services Ltd			nent Services Ltd			Dates:	03/11/2022 - 04/11/2022	Logged By LAB	y	
Well	Water	Samples	s and	In Situ Testing	Depth	Level	Legend	Stratum Description		
vveii	Strikes	Depth (m)	Туре	Results	(m)	(m)	Legend	·		
		0.30 - 1.00	Т		0.30	15.63		MADE GROUND - Grey gravel. Gra angular of limestone and ballast. Soft to firm brown sandy gravelly CL occasional cobble content. Sand is a medium. Gravel is fine to coarse ar angular of mudstone. (GLACIOFLUVIAL DEPOSITS)	AY with ine to	
		1.20		N=14 (2,2/3,4,4,3)	1.20	14.73			U U	1 —
				(, , , , , , ,	1.50	14.43		Soft to firm brown to dark grey sligh sandy CLAY. Sand is fine to medium	n. Gravel is	_
					1.00	14.40	incorrect incorrect incorrect key key key incorrect incorrect incorrect	fine to medium sub angular to angul mudstone.	ar of	-
		2.00		N=25 (4,5/6,6,6,7)	,		key key key Incorrect incorrect key key key	(GLACIOFLUVIAL DEPOSITS) Soft to firm brown to dark grey slight		2 —
							incorrect incorrect incorrect key key key incorrect incorrect incorrect	sandy CLAY with occasional cobble fine to medium. Gravel is fine to me		-
		2.50	Т				key key key incorrect incorrect key key key	to sub angular of mudstone. Cobble medium angular to sub angular of m	s are fine to	_
							incorrect incorrect incorrect key key key incorrect incorrect incorrect	(GLACIOFLUVIAL DEPOSITS)		_
		3.00		N=16 (5,4/4,4,4,4)	3.00	12.93		Very weak weathered dark grey brown MUDSTONE. Recovered as a grave		3 —
		3.50	Т		3.50	12.43		fine to medium angular to sub angul mudstone.		_
		3.30	'		0.50	12.43		(TETRAGRAPTUS BEDS)		-
		4.00		N=17 (3,6/4,5,4,4)				Stiff brown to dark grey gravelly very CLAY. Sand is fine to medium. Grav coarse angular to sub angular of mu (TETRAGRAPTUS BEDS)	el is fine to	4
		5.00		N=28 (3,9/6,6,6,10)			becoming more dark grey in colour and gr 5.00m depth.	avelly from	5 -
					5.50	10.43		Stiff to very stiff brown to dark grey of gravelly CLAY. Sand is fine to medium angular to sub angul mudstone. (TETRAGRAPTUS BEDS)	ım. Gravel is	6 —
		6.30 - 6.50 6.50	В	50 (25 for 75mm/5	6.30 0 6.50	9.63 9.43		Dense dark grey brown very clayey		_
		6.60		for 0mm) 50 (25 for 60mm/5 for 10mm)	6.60	9.33		GRAVEL. Sand is fine to coarse. Gr coarse angular to sub angular of mu siltstone. (TETRAGRAPTUS BEDS)	idstone and	7 —
								Weak weathered dark grey MUDST (TETRAGRAPTUS BEDS) End of borehole at 6.60 m	ONE. ;	
										8 —
										9 -
										-
Remai	al ca									10 —

- Remarks

 1. No groundwater was encountered during the drilling process.

 2. Borehole was terminated at 6.60m depth due to refusal and backfilled with arisings.

h	C	n							Borehole N	lo.
Consulting				Borehole Log				CP02		
								Sheet 1 of 1		
			Project No. C4103		Co-ords:	241210.39 - 218291.70	Hole Type CP			
Location: Pibwrlwyd Lane, Carmarthen					Level:	20.11	Scale 1:50			
Client: Gleeds Management Services Ltd						Dates:	Dates: 04/11/2022 - 04/11/2022		Logged By LAB	
Well	Water	Samples and In Situ Testing			Depth Level		Legend	Stratum Description		
19 V,	Strikes	Depth (m)	Туре	Results	(m) 0.10	(m) 20.01		MADE GROUND - Asphalt concrete) .	-
		0.50 - 1.00	Т		0.50	19.61		MADE GROUND - Grey gravel. Gra angular of limestone and ballast. Firm brown orange grey sandy grav		-
								Sand is fine to medium. Gravel is fine angular to sub angular of mudstone	ne to coarse	-
		1.20		N=11 (1,2/2,3,3,3	1.00	19.11		(GLACIOFLUVIAL DEPOSITS) Firm brown grey very sandy gravell is fine to medium. Gravel is fine to r		1 -
		1.50	Т		1.50	18.61		angular to sub angular of mudstone (GLACIOFLUVIAL DEPOSITS)	ı. /	-
		2.00		N=14 (2,2/3,3,4,4	4)			Firm brown orange grey sandy grave Sand is fine to coarse. Gravel is fine angular to sub angular of mudstone	e to coarse	2 -
								(GLACIOFLUVIAL DEPOSITS)		=
					2.60	17.51		Very weak weathered dark grey ML (TETRAGRAPTUS BEDS)	IDSTONE.	
		3.00		50 (7,10/50 for 185mm)	3.00	17.11		Very weak weathered dark grey ML Recovered as a slightly gravelly sar		3 -
		3.50	Т		3.50	16.61		Sand is fine to coarse. Gravel is me to sub angular of mudstone and silt	dium angular	
		3.80		50 (25 for 95mm/5 for 75mm)	4.00	16.11		(TETRAGRAPTUS BEDS) Weak weathered dark grey MUDST (TETRAGRAPTUS BEDS)	ONE.	4 —
		4.00		50 (25 for 75mm/5 for 45mm)	50			End of borehole at 4.00 m		
										-
										5 -
										=
										6 -
										6 —
										7 =
										8 —
										_
										9 —
										-
										-
Remark										10 —

- Remarks

 1. No groundwater was encountered during the drilling process.

 2. Borehole was terminated at 4.00m depth due to refusal.

 3. Gas and water monitoring standpipe installed to 4.00m depth.

									Borehole N	lo.
n	S	р				Bο	reho	ole Log	CP03	
con	sulti	ng						510 209	Sheet 1 of	
Projec	t Name:	Coleg Sir (Gar Pil	owrlwyd Campus	Project No. 34103		Co-ords:	241236.48 - 218256.99	Hole Type CP	
Locati	on:	Pibwrlwyd	Lane,	Carmarthen			Level:	14.54	Scale 1:50	
Client:		Gleeds Ma	nager	ment Services Ltd			Dates:	07/11/2022 - 07/11/2022	Logged B	у
Well	Water	Samples	s and	n Situ Testing	Depth	Level	Legend	Stratum Description		
**************************************	Strikes	Depth (m)	Туре	Results	(m)	(m)	Logona	MADE GROUND - Grey gravel. Gra		
		0.50 - 1.00 1.20 1.50	В	N=33 (4,5/7,7,9,10)	0.50	14.04		angular of limestone and ballast. Soft to firm brown grey very sandy of CLAY. Sand is fine to coarse. Grave to sub angular of mudstone. (GLACIOFLUVIAL DEPOSITS)	gravelly	1 -
		2.00 2.10		50 (25 for 100mm/50 for 40mm) 50 (25 for 30mm/50 for 35mm)	2.10	12.54 12.44		Weak weathered dark grey MUDST \ (TETRAGRAPTUS BEDS) End of borehole at 2.10 m	ONE.	2 -
										3 —
										4 —
										5 —
										6 -
										7 —
										8 —
										9 —
										10 —

- Remarks

 1. No groundwater was encountered during the drilling process.

 2. Borehole was terminated at 2.10m depth due to refusal and backfilled with arisings.

		<u> </u>							Borehole N	lo.
	5	P				Boi	eho	ole Log	WS01	
con	sult	ing						9	Sheet 1 of	1
Projec	t Name:	Coleg Sir (Gar Pik	owrlwyd Campus	Project No. C4103		Co-ords:	241211.34 - 218300.01	Hole Type WS	Э
Locati		Diburbund	Lana	Carmarthen	04100		Loveli	20.93	Scale	
Locati	JII.	Pibwiiwyd	Lane,	Carmarmen			Level:	20.93	1:50	
Client:				nent Services Ltd			Dates:	02/11/2022 - 02/11/2022	Logged B	y
Well	Water Strikes	-		n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description		
	Strikes	Depth (m) 0.40 0.80 1.00 1.20 2.00	Type TJ T T T	Results N=20 (3,4/4,5,6,5) N=18 (4,4/4,4,4,6)	0.09	(m) 20.84 20.43		MADE GROUND - Asphalt concrete MADE GROUND - Black slightly sar Sand is fine to medium. Gravel are so filmestone and ballast. Soft to firm light brown mottled yello slightly silty sandy gravelly CLAY with cobble content. Sand is fine to coarse and cobbles are fine to coarse substangular of mudstone, sandstone and (GLACIOFLUVIAL DEPOSITS) becoming less gravelly and cobbly from 1. End of borehole at 2.00 m	e. ndy gravel . sub angular wish brown th occasional se. Gravel angular to d siltstone.	1 1 1 1 1 1 1 1 1 1
Domo										10 —

- Remarks

 1. No groundwater was encountered during the drilling works.

 2. Borehole was terminated 2.00m depth and backfilled with arisings.

1	C	n							Borehole N	0.
	5					Bo	reho	ole Log	WS02	
con	sult	ing						.	Sheet 1 of	
Projec	t Name:	Coleg Sir (Gar Pil		Project No. C4103		Co-ords:	241192.42 - 218305.92	Hole Type WS	•
		D''	•	J.	C4103			04.44	Scale	
Location	on:	Pibwriwyd	Lane,	Carmarthen			Level:	21.41	1:50	
Client:				ment Services Ltd		1	Dates:	03/11/2022 - 03/11/2022	Logged By DRS	y
Well	Water Strikes		I	In Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description		
10.14.5	Ou moo	Depth (m)	Туре	Results	0.09	21.32		MADE GROUND - Asphalt concrete		
		0.30	TJ					MADE GROUND - Dark grey black gravelly silty clayey fill. Sand is fine	sandy	=
		0.70	_		0.50	20.91	Xx-	Gravel is sub angular to angular of r	nudstone	_
		0.70	Т				×	\ and sandstone, asphalt concrete. Soft to firm light yellowish brown silt	y sandy	=
		1.00		N=21 (3,4/4,4,7,6	5)		X-X-X	gravelly CLAY with occasional cobb fine to medium. Gravel is fine to medium.	dium sub	1 —
							XX-	angular of mudstone, sandstone and Cobbles are sub angular of mudstor		_
		1.70	Т				X— —X	(GLACIOFLUVIAL DEPOSITS)		-
		2.00		N=24 (15,10/6,6,7,	5) 2.00	19.41				2 —
		2.00			2.00			End of borehole at 2.00 m		
										=
										=
										3 -
										=
										_
										=
										4 —
										_
										_
										5 —
										=
										_
										=
										6 _
										_
										_
										=
										7 —
										=
										_
										8 —
										9 _
										_
Domo										10 —

- Remarks

 1. No groundwater was encountered during the drilling works.

 2. Borehole was terminated 2.00m depth and backfilled with arisings.

	C	n							Borehole N	0.
	5	P				Boi	reho	ole Log	WS03	,
con	sult	ing						9	Sheet 1 of	1
Projec	t Name:	Coleg Sir (Gar Pil	owrlwyd Campus	Project No. C4103		Co-ords:	241170.58 - 218290.45	Hole Type WS)
				a "	C4 103			40.00	Scale	
Location	on:	Pibwrlwyd	Lane,	Carmarthen			Level:	19.30	1:50	
Client:				nent Services Ltd			Dates:	03/11/2022 - 03/11/2022	Logged By DRS	y
Well	Water Strikes	•		n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description	ı	
	Strikes	Depth (m) 0.40 0.60 1.00 2.00	Type TJ T	Results N=15 (2,3/3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4	0.09 0.30	(m) 19.21 19.00		MADE GROUND - Asphalt concrete MADE GROUND - grey sandy grav clayey fill. Sand is fine to medium. Of angular to angular of mudstone and asphalt concrete. Soft to firm light yellowish brown silt gravelly CLAY with occasional cobb fine to medium. Gravel is fine to me angular of mudstone, sandstone and Cobbles are sub angular of mudston (GLACIOFLUVIAL DEPOSITS) End of borehole at 2.00 m	elly silty Gravel is sub I sandstone, by sandy les. Sand is dium sub d siltstone.	1 1 1 1 1 1 1 1 1 1
										9
Domo										10 —

- Remarks

 1. No groundwater was encountered during the drilling works.

 2. Borehole was terminated 2.00m depth and backfilled with arisings.

	C	1							Borehole N	lo.
	5	D				Boi	reho	ole Log	WS04	
n	sulti	ng						- · · · · · · · · · · · · · · · · · · ·	Sheet 1 of	1
oject	Name:	Coleg Sir (Gar Pik		Project No. C4103		Co-ords:	241201.64 - 218324.02	Hole Type WS	9
catio	on:	Pibwrlwyd	Lane,	Carmarthen	04100		Level:	23.77	Scale 1:50	
ent:		Gleeds Ma	ınagen	nent Services Ltd			Dates:	03/11/2022 - 03/11/2022	Logged B	y
	Water Strikes	Samples Depth (m)	Type	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description		
		0.40 1.00 1.10	T	N=24 (7,4/5,6,7,6)	0.12 0.20	23.65 23.57 22.57		MADE GROUND - Asphalt concrete MADE GROUND - Dark grey black gravelly silty clayey fill. Sand is fine Gravel is sub angular to angular of and sandstone, asphalt concrete. Soft to firm light brown mottled yello slightly silty sandy gravelly CLAY wi cobble content. Sand is fine to med fine to coarse sub angular of mudst	to medium. mudstone wish grey th occasional um. Gravel is	1 —
					1.60	22.17	X	sandstone and siltstone. Cobbles at angular of mudstone. angular of mudstone. (GLACIOFLUVIAL DEPOSITS)		- - -
		1.80 2.00	Т	50 (8,12/50 for 220mm)	2.00	21.77		Soft light brown mottled grey very sigravelly silty CLAY. Sand is fine to no Gravel is fine to coarse sub angular mudstone, sandstone and siltstone. (GLACIOFLUVIAL DEPOSITS)	nedium. of	2 -
								Extremely weak dark reddish brown MUDSTONE. Recovered as a grave Gravel is sub angular of mudstone. (TETRAGRAPTUS BEDS) End of borehole at 2.00 m		3 —
										4 —
										5 —
										6 -
										7 —
										8 —
										9 —
										10 —

- Remarks

 1. No groundwater was encountered during the drilling works.

 2. Borehole was terminated 2.00m depth and backfilled with arisings.

	C	<u> </u>							Borehole N	lo.
Π	5	D				Bor	reho	ole Log	WS05	5
con	sulti	ing					• • • • • • • • • • • • • • • • • • • •	0.0 _09	Sheet 1 of	1
Projec	t Name:	Coleg Sir (Gar Pil	owrlwyd Campus	roject No. 4103		Co-ords:	241173.47 - 218352.84	Hole Type WS	Э
Location	on:	Pibwrlwyd	Lane,	Carmarthen			Level:	23.99	Scale 1:50	
Client:		Gleeds Ma	ınagen	nent Services Ltd			Dates:	03/11/2022 - 03/11/2022	Logged B	у
Well	Water	Samples	s and I	n Situ Testing	Depth	Level	Legend	Stratum Description		
~//X	Strikes	Depth (m)	Туре	Results	(m)	(m)	~//XV//XV	-		
		0.20	TJ		0.15	23.84	X X -	Grass overlying brown sandy slightly CLAY with occasional rootlets. Sand medium. Gravel is fine to coarse sul mudstone, sandstone.	is fine to	- - - -
		0.60	Т					(TOPSOIL) Soft light brown mottled grey very sa	andy very	=
		0.90 1.00	Т	50 (25 for 95mm/50 for 150mm)	1.00	22.99		gravelly silty CLAY. Sand is fine to n Gravel is sub angular of mudstone, and siltstone.	nedium.	1 -
								(GLACIOFLUVIAL DEPOSITS) Extremely weak dark reddish brown MUDSTONE. Recovered as a grave Gravel is sub angular of mudstone.		- - - -
								(TETRAGRAPTUS BEDS) End of borehole at 1.00 m	j	2 —
										-
										3 -
										-
										4 =
										-
										5 —
										- - -
										6 —
										7 —
										-
										-
										8 —
										_ _ _ _
										9 -
										- - -
Dama										10 —

- Remarks

 1. No groundwater was encountered during the drilling works.

 2. Borehole was terminated 1.00m depth due to refusal and backfilled with arisings.

Borehole Log Sheet 1 of 1 Project Name: Colleg Sir Gar Pibwrkvyd Campus Project No. Collog Sir Gar Pibwrkvyd Lane, Carmarthen Collect: Gleeds Management Services Ltd Well Water Samples and In Situ Testing Depth (m) Type Results Depth (m) Type Results Dought (m) Dought (m) Type Results Dought (m) Dought (m) Type Results Dought (m) Dough		6	<u> </u>							Borehole N	lo.
Sheet 1 of 1 loos Stream Sheet S	Π	5	P				Boi	reho	ole Loa	WS06	;
Project Name Coleg Sir Gar Pibwrlwyd Campus Co-ords 241141.94 - 218330.88 Hole Type No Scale 1.50	con	sulti	in g					• • • • • • • • • • • • • • • • • • • •	5.5 = 59	Sheet 1 of	1
Client Seeds Management Services Ltd Client Client Strikes Client Clie	Project	Name:	Coleg Sir (Gar Pil				Co-ords:	241141.94 - 218330.88		9
Well Water Samples and in Situ Testing Depth (m) Type Results (m) Using Care Well (m)	Locatio	n:	Pibwrlwyd	Lane,	Carmarthen			Level:	22.87		
Strikes Depth (m) Type Results (m) (Client:		Gleeds Ma	nagen	nent Services Ltd			Dates:	03/11/2022 - 03/11/2022		у
0.40 TJ 0.55 T 0.50 T 0.80 T 1.00 N=14 (3,2/3,3,3,5) 0.80 T 1.00	1 1/1/011 1	L						Legend	Stratum Description	l	
			0.40 0.55 0.80 1.00 1.40	TJ T T	N=14 (3,2/3,3,3,5)	0.30 0.50 0.60 0.70 0.90	22.57 22.37 22.27 22.17 21.97		CLAY with occasional rootlets. Sand medium. Gravel is fine to coarse su mudstone, sandstone. (TOPSOIL) Soft brown slightly sandy slightly gr. with occasional cobble content. Sar coarse. Gravel is fine to medium su mudstone, sandstone and siltstone. coarse sub angular of mudstone. (GLACIOFLUVIAL DEPOSITS) Loose yellowish brown SAND. Sand medium. (GLACIOFLUVIAL DEPOSITS) Extremely weak weathered cream t SANDSTONE. (GLACIOFLUVIAL DEPOSITS) Dark grey to black slightly clayey slightly clayer slightly c	d is fine to b angular of avelly CLAY and is fine to b angular of Cobbles are d is fine to o light grey ghtly sandy Gravel is sub angular of cobbles are ghtly sandy Gravel is sub angular of cobbles are d is fine to o light grey ghtly sandy Gravel is sub angular of cobbles are districted angular of cobbles and d	2 3 4

- Remarks

 1. No groundwater was encountered during the drilling works.

 2. Borehole was terminated 2.00m depth and backfilled with arisings.

	C	n							Borehole N	lo.
Ш	5	P				Boi	eho	ole Log	WS07	,
con	sult	ing						9	Sheet 1 of	1
Projec	t Name:	Coleg Sir (Gar Pik		Project No. C4103		Co-ords:	241076.92 - 218336.11	Hole Type WS	Э
Location	on:	Pibwrlwyd	Lane,	Carmarthen			Level:	21.38	Scale 1:50	
Client:		Gleeds Ma	nagen	nent Services Ltd			Dates:	03/11/2022 - 03/11/2022	Logged B DRS	У
Well	Water Strikes	•		n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description		
	Guines	0.30 0.50 0.90 1.00 1.70 - 2.00 2.00	Type TJ TJ B	Results N=16 (2,3/4,3,3,6) N=16 (3,4/3,4,4,5)	0.25 0.50 0.70)	21.13 20.88 20.68 19.68 19.38		Grass overlying brown sandy slightly CLAY with occasional rootlets. Sand medium. Gravel is fine to coarse sul mudstone, sandstone. (TOPSOIL) Soft brown slightly sandy slightly grawith occasional cobble content. Sand coarse. Gravel is fine to medium sul mudstone, sandstone and siltstone. (GLACIOFLUVIAL DEPOSITS) Dark grey to black slightly clayey slig GRAVEL. Sand is fine to medium. Grangular to angular of mudstone. (GLACIOFLUVIAL DEPOSITS) Soft light brown mottled grey slightly sandy CLAY. Sand is fine to medium fine to coarse sub angular of mudstot (GLACIOFLUVIAL DEPOSITS) Loose light brown mottled grey slight very gravelly SAND. Sand is fine to Gravel is sub angular of mudstone, shale and flint. (GLACIOFLUVIAL DEPOSITS) End of borehole at 2.00 m	avelly CLAY d is fine to angular of cobbles are ghtly sandy gravelly a Gravel is one. tty clayey medium.	3 3 4 7 8 7 8 9 9
										10 —

- Remarks

 1. No groundwater was encountered during the drilling works.

 2. Borehole was terminated 2.00m depth and backfilled with arisings.

Borehole Log Project Name: Coleg Sir Gar Pibwrhwyd Campus, Project No. CA103 Co-ords: 241067.51 - 218335.00 Mole Type WS Scale 1.50 Client: Gleods Management Services Ltd Debt. Level: 20.76 Well Water British Depth (m) Type Results 1.00 N=7 (5.2/1.2.2.2) 1.10 19.66 1.00 N=7 (5.2/1.2.2.2) 1.10 19.66 1.00 N=19 (3.4/3.6.6.4) 2.00 18.8 18.8 18.8 2.00 1.00 Sheep She		C	n							Borehole N	lo.
Sheel 1 of 1 Project Name: Coleg Sir Gar Pibwrhyd Campus Colosation: Pibwrhyd Lane, Carmarthen Location: Pibwrhyd Lane, Carmarthen Location: Depth (m) Client: Gleeds Management Services Ltd Well Water Samples and In Situ Testing Depth (m) Type Results 0.30 0.30 1.00 N=7 (5.2/1.2.2.2) 1.10 1.80 - 2.00 8 N=19 (3.4/3.6.4) 2.00 1.80 - 2.00 1.80 - 2.00 1.80 - 2.00 8 N=19 (3.4/3.6.4) 2.00 1.80 - 2.00 1.8		5	P				Boi	reho	ole Log	WS08	3
Pibwritwyd Lane, Carmarthen	cons	sulti	ng						3	Sheet 1 of	1
Lecelion: Pitwritvyd Lane, Carmarthen Level: 20.76 Scale 15:50 Client: Gleeds Management Services Ltd Wall Water Samples and In Situ Testing Strikes Depth (m) Type Results 0.30 Strikes Depth (Project	Name:	Coleg Sir (Gar Pik	owrlwyd Campus			Co-ords:	241067.51 - 218335.00		Э
Well Water Samples and In Situ Testing Depth (m) Type Results 0.30 20.46 1.00 N=7 (5.21,2.2.2) 1.10 19.66 1.80 2.00 B N=19 (3.43.8.6.4) 2.00 18.76 2.00 Situation of the state of t	Location	n:	Pibwrlwyd	Lane,	Carmarthen			Level:	20.76	Scale	
Well Strikes Depth (m) Type Results (m) (m) (m) Legend Stratum Description (m) Carast overlying trown sandy slightly gravelly CLY with occasional robotics. Sand is fine to mudstone, sandstone occase sub angular of mudstone, sandstone and slightly sandy slightly gravelly CLY with occasional coblect context. Sand is fine to mudstone, sandstone and slightly sandy slightly gravelly clark with occasional coblect context. Sand is fine to mudstone, sandstone and slightly sandy slightly gravelly clark with occasional more coblect context. Sand is fine to mudstone, sandstone and slightly sandy (CLY Sand is fine to mudstone, sandstone, sand	Client:		Gleeds Ma	nagen	nent Services Ltd			Dates:	03/11/2022 - 03/11/2022		у
1.00 N=7 (5.2/1.2.2.2) 1.10 19.66 modifiers and specific properties of the second specifiers of the second specifiers and specifiers of the second specifiers of the second specifiers and specifiers of the second specifiers and specifiers of the second					_		1	Legend	Stratum Description		
			1.00		N=7 (5,2/1,2,2,2	(m) 0.30) 1.10	(m) 20.46 19.66	Legend	Grass overlying brown sandy slightl CLAY with occasional rootlets. Sand medium. Gravel is fine to coarse sul mudstone, sandstone. (TOPSOIL) Soft brown slightly sandy slightly grawith occasional cobble content. San coarse. Gravel is fine to medium sul mudstone, sandstone and siltstone. coarse sub angular of mudstone. (GLACIOFLUVIAL DEPOSITS) Soft light brown mottled grey slightly sandy CLAY. Sand is fine to medium fine to coarse sub angular of mudstone (GLACIOFLUVIAL DEPOSITS) Loose light brown mottled grey slight very gravelly SAND. Sand is fine to Gravel is sub angular of mudstone, shale and flint. (GLACIOFLUVIAL DEPOSITS)	y gravelly d is fine to b angular of avelly CLAY d is fine to b angular of Cobbles are / gravelly n. Gravel is one. attly clayey medium.	2 3 4 5 6 7 7 8
											10 —

- Remarks

 1. No groundwater was encountered during the drilling works.

 2. Borehole was terminated 2.00m depth and backfilled with arisings.

Water Samples and in Situ Tosting Depth Strikes Depth Dept	b	C	n							Borehole N	١o.
Sheet 1 of 1 Project Name: Coleg Sir Gar Pibwriwyd Campus Coloration: Pibwriwyd Lane, Carmarthen Location: Pibwriwyd Lane, Carmarthen Client: Gleeds Management Services Ltd Well Water Samples and In Situ Testing Strikes Depth (m) Type Results 0.30 TJ 0.30 TJ 1.00 TJ 1.		5	P				Bo	reho	ole Log	WS09)
Plowthyd Lane, Carmarthen Location: Plowthyd Lane, Carmarthen Level: 15.89 Scale 1.50 Client: Gleeds Management Services Ltd Well Water Samples and In Situ Testing Depth (m) Type Results (m) Dates: 01/11/2022 - 01/11/2022 Dggad By DRS Strikes Depth (m) Type Results (m) MADE GROUD-Black slightly sendy gravely sity CLAV Sand is fine to made the coaceaal cobbe content. Sand is fine to made the coaceaal cobbe content. Sand is fine to made the coaceaal cobbe content. Sand is fine to made the coaceaal cobbe content. Sand is fine to made the coaceaal cobbe content. Sand is fine to made the coaceaal cobbe content. Sand is fine to made the coaceaal cobbe content. Sand is fine to made the coaceaal cobbe content. Sand is fine to made the coaceaal cobbe content. Sand is fine to made the coaceaal cobbe content. Sand is fine to made the coaceaal cobbe content. Sand is fine to made the coaceaal cobbe content. Sand is fine to made the coaceaal cobbe content. Sand is fine to made the coaceaal cobbe content. Sand is fine to made the coaceaa cobbe content. Sand is fine to made the coaceaa cobbe content. Sand is fine to made the coaceaa cobbe content. Sand is fine to made the coaceaa cobbe content. Sand is fine to made the coaceaa cobbe content. Sand is fine to made the coaceaa cobbe content. Sand is fine to made the coaceaa cobbe content. Sand is fine to made the coaceaa cobbe content. Sand is fine to made the coaceaa cobbe content. Sand is fine to made the coaceaa coaceaaa cobbe content. Sand is fine to made the coaceaa cobbe content. Sand is fine to made the coaceaa cobbe content. Sand is fine to made the coaceaa coaceaaa coaceaaaa coaceaaaa coaceaaaa coaceaaaa coaceaaaaaaaaaa	con	sult	ing								
Client: Gleeds Management Services Ltd Dates: 01/11/2022 - 01/11/2022 Dagged By DRS Strikes Depth (m) Type Results (m) Upon N=23 (7,447.6.8)	Projec	t Name:	Coleg Sir (Gar Pik				Co-ords:	241168.34 - 218256.80	1	е
Well Water Samples and In Situ Testing Strikes Depth (m) Type Results Depth (m) Depth (m) Type Results Depth (m) Type Results Depth (m) Type Results Depth (m) Type Results Depth (m) Depth (m) Type Results Depth (m) Type Results Depth (m) Type	Location	on:	Pibwrlwyd	Lane,	Carmarthen			Level:	15.89		
Strikes Depth (m) Type Results (m) (m) Legend Stratum Description Stratum Description	Client:		Gleeds Ma	anagen	nent Services Ltd			Dates:	01/11/2022 - 01/11/2022		У
0.30	Well							Legend	Stratum Description	1	
Remarks		Strikes	Depth (m) 0.30 0.90 1.00 1.20 2.00 2.70 3.00 3.20	Type TJ T T	Results N=23 (7,4/4,7,6,6) N=25 (7,7/6,7,6,6) N=38 (11,10/9,8,10,11) 50 (25 for 95mm/5)	(m) 0.20	(m) 15.68 13.28	Legend A A A A A A A A A A A A A A A A A A A	MADE GROUND - Black slightly sa with occasional cobble content. Sar medium. Gravel and cobbles are su limestone and ballast. Soft to firm light brown mottled yellor gravelly silty CLAY. Sand is fine to regravel is fine to coarse sub angular mudstone, sandstone, flint and shall (GLACIOFLUVIAL DEPOSITS) Firm light brown mottled yellow grey sandy slightly gravelly silty CLAY with cobble contents. Sand is fine to meand cobbles are fine to coarse submudstone and sandstone. (GLACIOFLUVIAL DEPOSITS) Weak weathered dark grey MUDST Recovered as a gravel. Gavel is fine sub angular of mudstone and sands (TETRAGRAPTUS BEDS)	ndy gravel nd is fine to ib angular of owish sandy nedium. of e. y slightly ith occasional dium. Gravel angular of	2 3 4 1 5 6 7 8 1 8 1 1 1 1 1 1 1

- Remarks

 1. No groundwater was encountered during the drilling works.

 2. Borehole was terminated 4.00m depth due to refusal.

 3. Gas and water monitoring standpipe installed to 4.00m depth.

									Borehole N	lo.
n	S	D				Bo	reho	ole Log	WS10)
con	sult	ing						510 209	Sheet 1 of	1
Projec	t Name:	Coleg Sir	Gar Pil		Project No. 34103		Co-ords:	241168.37 - 218261.70	Hole Type	
			•		,4103			45.00	Scale	
Locati	on:	Pibwrlwyd	Lane,	Carmarthen			Level:	15.96	1:50	
Client:		Gleeds Ma	anager	nent Services Ltd			Dates:	02/11/2022 - 02/11/2022	Logged B DRS	У
Well	Water Strikes		1	n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description	1	
X//XX//	Cuntoo	Depth (m) 0.10	Type	Results	0.15	15.81		MADE GROUND - Grey gravel. Gra	avel is sub	
		0.60 1.00 1.20	TJ	N=15 (4,5/4,4,3,4)	0.80	15.16		angular of limestone and ballast. Soft light brown slightly silty slightly gravelly CLAY with occasional cobb Sand is fine to medium. Gravel is fin sub angular of mudstone, sandston siltstone. Cobbles are sub angular of (GLACIOFLUVIAL DEPOSITS) Firm light brown mottled yellowish be	sandy sandy sle content. ne to coarse e and of mudstone.	1 —
		1.70	Т				× × ×	very sandy very gravelly CLAY with cobble content. Sand is fine to med sub angular to angular of mudstone	ium. Gravel is	-
		2.00		N=37 (4,4/7,9,10,11)			siltstone, flint and shale. Cobbles at angular of mudstone. (GLACIOFLUVIAL DEPOSITS)	re sub	2 -
		2.90 2.90	Т	50 (25 for 15mm/50 for 50mm)	2.90	13.06	X X - X - X - X - X - X - X - X - X	becoming more gravelly and grey in color to 2.70m depth. End of borehole at 2.90 m		3 —
										4 -
										5 -
										6 —
										7 -
										8 —
										9 -
										10 —

- Remarks

 1. No groundwater was encountered during the drilling works.

 2. Borehole was terminated 2.90m depth due to refusal and backfilled with arisings.

		n							Borehole N	lo.
Π	5	P				Bo	reho	ole Log	WS11	
con	sult	ing						J	Sheet 1 of	1
Projec	t Name:	Coleg Sir	Gar Pil		Project No. C4103		Co-ords:	241242.60 - 218257.59	Hole Type WS	Э
Locati	on:	Pibwrlwyd	Lane,	Carmarthen			Level:	14.54	Scale 1:50	
Client:		Gleeds Ma	anagen	nent Services Ltd			Dates:	02/11/2022 - 02/11/2022	Logged B	У
Well	Water Strikes	Samples Depth (m)	Type	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description	1	
		0.20 0.50	TJ T		0.15 0.40	14.39 14.14	-	MADE GROUND - Asphalt concrete MADE GROUND - Dark grey black gravelly silty clayey fill. Sand is fine Gravel is sub angular to angular of	sandy to medium.	- - - - -
	•	0.70 1.00 1.00 - 1.40	TJ B	N=16 (15,5/3,4,5,4	0.90	13.64	X X	and sandstone, asphalt concrete. Soft light brown very sandy very grasity CLAY with occasional cobble of is fine to medium. Gravel is fine to angular of mudstone and sandstone coarse sub angular of mudstone.	ontent. Sand coarse sub	1 -
		1.80 1.80	Т	N=43 (12,7/6,9,12,16)	1.60 1.80	12.94 12.74	X	(GLACIOFLUVIAL DEPOSITS) Loose to medium dense brown SAN fine to coarse. (GLACIOFLUVIAL DEPOSITS) Firm to stiff light brown slightly sand and silty CLAY. Sand is fine to medius sub angular of mudstone. (GLACIOFLUVIAL DEPOSITS)	ly gravelly	2 -
								End of borehole at 1.80 m		3 —
										4 —
										5 —
										6 —
										7 —
										8 —
										9 —
										10 —

- Remarks

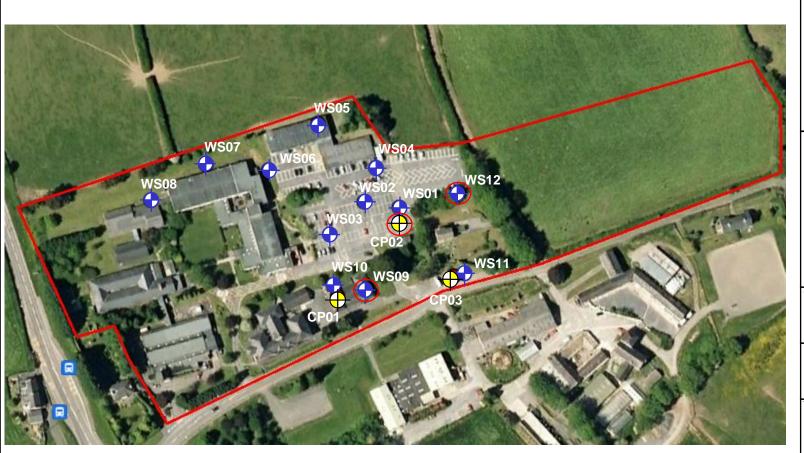
 1. No groundwater was encountered during the drilling works.

 2. Borehole was terminated 1.80m depth due to obstruction and backfilled with arisings.

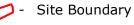
									Borehole N	lo.
$\mathbf{n} \mathbf{s} \mathbf{p}$						Bo	reho	ole Log	WS12	•
cons	sulti	ng					. •	515 259	Sheet 1 of	1
Project	Name:	Coleg Sir (Gar Pil		wyd Campus Project No. C4103 Co-ords: 241234.19 - 218307.81					е
Locatio	n:	Pibwrlwyd	Lane,	Carmarthen	Level: 21.72				Scale 1:50	
Client:		Gleeds Ma	nager	nent Services Ltd			Dates:	02/11/2022 - 02/11/2022	Logged B DRS	у
	Water Strikes			n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description		
	JUIKES	Depth (m) 0.40 0.80 1.00 1.30 2.00 2.20 2.80 3.00	Type TJ T T	N=10 (1,2/2,2,2,4) N=32 (6,6/6,6,8,12 50 (25 for 115mm/5 for 160mm)	0.09 0.20 0.60	19.82 19.32 18.72		MADE GROUND - Asphalt concrete MADE GROUND - Black slightly sa Sand is fine to medium. Gravel are of limestone and ballast. Soft to firm dark brown grey slightly sandy gravelly CLAY. Sand is fine to Gravel is sub angular of mudstone, and siltstone. (GLACIOFLUVIAL DEPOSITS) Soft to firm light brown mottled yello slightly silty sandy gravelly CLAY wi cobble content. Sand is fine to coars and cobbles are fine to coarse sub a angular of mudstone, sandstone an (GLACIOFLUVIAL DEPOSITS) Soft light grey slightly sandy slightly CLAY. Sand is fine to medium. Grav angular of mudstone. (GLACIOFLUVIAL DEPOSITS) Extremely weak dark reddish brown MUDSTONE. Recovered as a grave Gravel is sub angular of mudstone. (TETRAGRAPTUS BEDS) End of borehole at 3.00 m	e. ndy gravel . sub angular silty slightly o coarse. sandstone owish grey th occasional se. Gravel angular to d siltstone. gravelly rel is sub	1 2 3 4 5 7 8 9 7 8 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9
Remark										10 —

- Remarks

 1. No groundwater was encountered during the drilling works.


 2. Borehole was terminated 3.00m depth due to refusal.

 3. Gas and water monitoring standpipe installed to 3.00m depth.


Appendix IV

DO NOT SCALE

NOTES:

Cable Percussive Borehole

Window Sampling Borehole

Monitoring Well

Lawrence House, Meadowbank Way, Eastwood, Nottingham, NG16 3SB Tel: 01773 535 555 Fax: 0870 600 6091

CLIENT:

Gleeds Management Ltd

PROJECT: Coleg Sir Gar – Pibwrlwyd Campus

TITLE:

Site Investigation Layout Plan

SCALE@SIZE:	ISSUE:
NTS	FINAL
DESIGN/DRAWN: NS	FEB 2023
PROJECT No:	DRAWING No:
C4103	502

© HSP Consulting Engineer Ltd © Crown Copyright.

Appendix V

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Final Report

Report No.: 22-43062-1

Initial Date of Issue: 06-Dec-2022

Client HSP Consulting Engineers Limited

Client Address: Lawrence House

Meadowbank Way

Eastwood

Nottinghamshire

NG16 3SB

Contact(s): Norezrin Shafii

Project C4103 Coleg Sir Gar - Pibrwlwyd

Campus

Quotation No.: Date Received: 09-Nov-2022

Order No.: Date Instructed: 09-Nov-2022

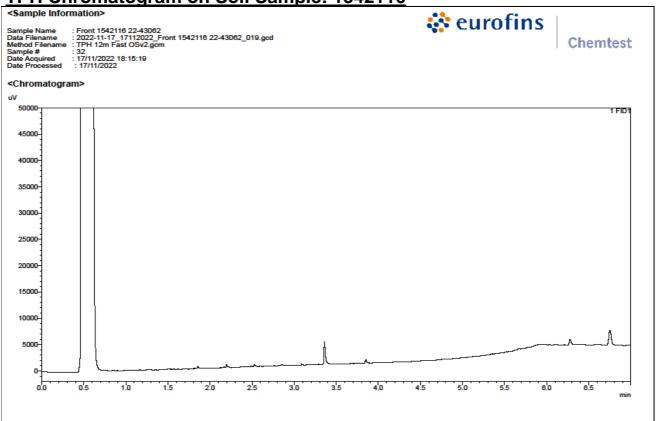
No. of Samples: 14

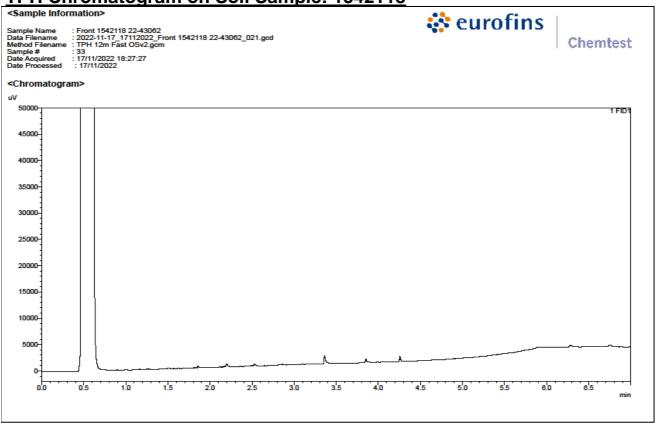
Turnaround (Wkdays): 10 Results Due: 22-Nov-2022

Date Approved: 06-Dec-2022

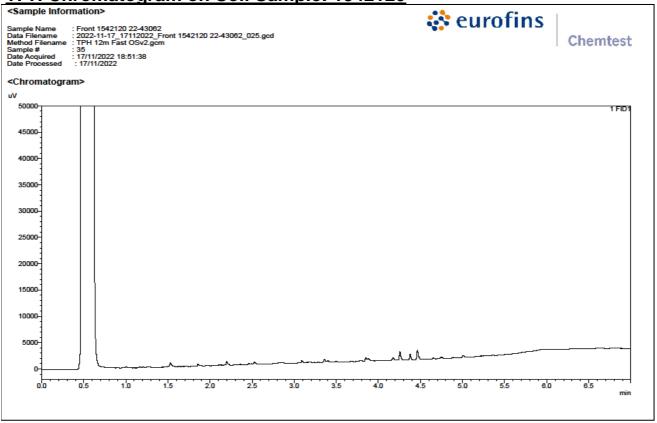
Approved By:

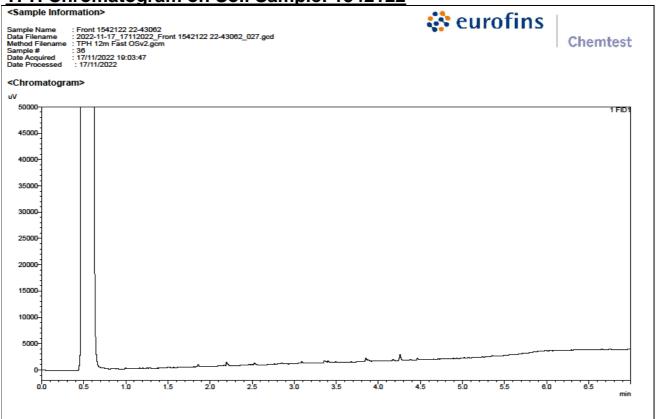
Details: Stuart Henderson, Technical

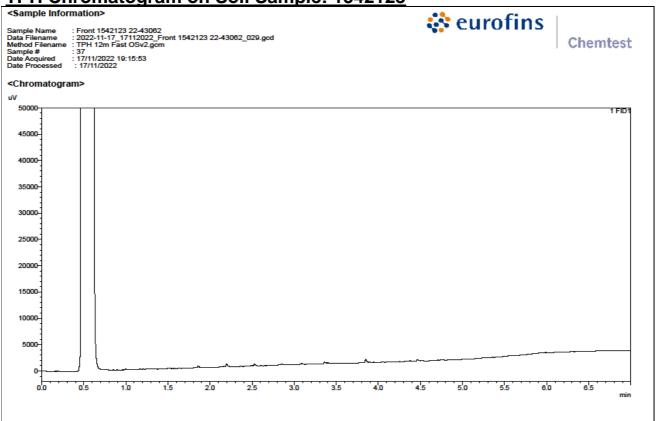

Manager

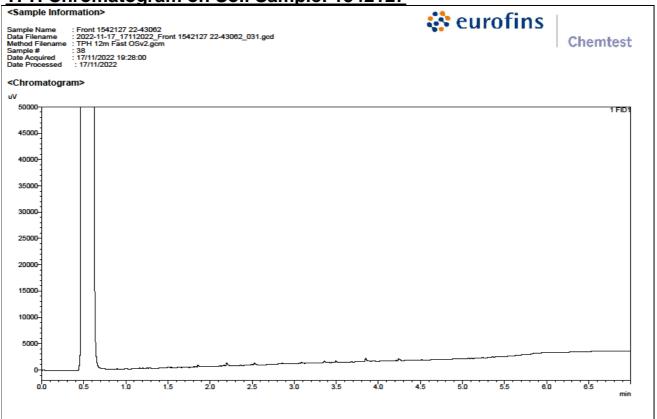

Project: C4103 Coleg Sir Gar - Pibrwiw	ryu Campus											
Client: HSP Consulting Engineers Limited		Che	mtest Jo	ob No.:	22-43062	22-43062	22-43062	22-43062	22-43062	22-43062	22-43062	22-43062
Quotation No.:	(Chemte	st Sam	ple ID.:	1542116	1542118	1542119	1542120	1542122	1542123	1542124	1542126
		Sa	ample Lo	ocation:	WS01	WS02	WS03	WS04	WS06	WS07	WS07	WS09
			Sample	е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top Dep	oth (m):	0.40	0.30	0.40	0.40	0.40	0.30	0.90	0.90
			Date Sa	ampled:	02-Nov-2022	02-Nov-2022	02-Nov-2022	02-Nov-2022	02-Nov-2022	02-Nov-2022	02-Nov-2022	02-Nov-2022
			Asbest	os Lab:		DURHAM				DURHAM		
Determinand	Accred.	SOP	Units	LOD								
ACM Type	U	2192		N/A		-				-		
Asbestos Identification	U	2192		N/A		No Asbestos Detected				No Asbestos Detected		
Moisture	N	2030	%	0.020	18	3.8	14	18	17	15	13	13
Chromatogram (TPH)	N			N/A	See Attached	See Attached	See Attached	See Attached	See Attached	See Attached		
Ha	U	2010		4.0	8.1	9.2	8.1	7.8	7.8	8.4	8.3	6.9
Boron (Hot Water Soluble)	Ū	2120	mg/kg	0.40	< 0.40	< 0.40	< 0.40	0.46	0.49	< 0.40	-	
Sulphate (2:1 Water Soluble) as SO4	Ū	2120	g/l	0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Total Sulphur	Ü	2175	%	0.010	0.021	0.049	0.026	0.052	0.048	0.047		
Cyanide (Total)	Ü	2300	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50		
Sulphide (Easily Liberatable)	N	2325	mg/kg	0.50	1.6	2.8	1.1	1.2	1.0	1.1		
Sulphate (Total)	Ü	2430	mg/kg	100	< 100	850	290	880	200	820		
Arsenic	Ü	2455	mg/kg	0.5	3.5	3.5	8.1	4.7	2.1	7.3		
Cadmium	U	2455	mg/kg	0.10	< 0.10	0.16	< 0.10	0.10	< 0.10	0.11		
Chromium	U	2455	mg/kg	0.10	8.4	2.9	17	9.2	3.6	12		
Antimony	N	2455	mg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0		
Copper	U	2455	mg/kg	0.50	8.8	5.4	16	7.1	3.1	9.8		
Mercury	U	2455	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05		
Nickel	U	2455	mg/kg	0.50	7.2	3.5	16	6.8	2.7	8.4		
Lead	U	2455		0.50	4.8	8.7	10	15	6.5	22		
Selenium	U	2455	mg/kg mg/kg	0.30	< 0.25	< 0.25	0.39	0.34	< 0.25	0.43		
Vanadium	U	2455		0.25	6.7	2.8	12	11	4.2	14		
Zinc	U		mg/kg		18	8.7	36	28	13	43		
		2455	mg/kg	0.50	< 0.50					< 0.50		
Chromium (Hexavalent)	N U	2490	mg/kg	0.50		< 0.50	< 0.50	< 0.50	< 0.50			
LOI		2610	%	0.10	4.4 1.7	1.0 3.8	4.2	9.1 5.6	6.8	7.8		
Organic Matter	U	2625	%	0.40			0.74		7.7	4.7		
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
Aliphatic TPH >C8-C10	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
Aliphatic TPH >C10-C12	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
Aliphatic TPH >C12-C16	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
Aliphatic TPH >C16-C21	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
Aliphatic TPH >C21-C35	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0		
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
Aromatic TPH >C8-C10	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		

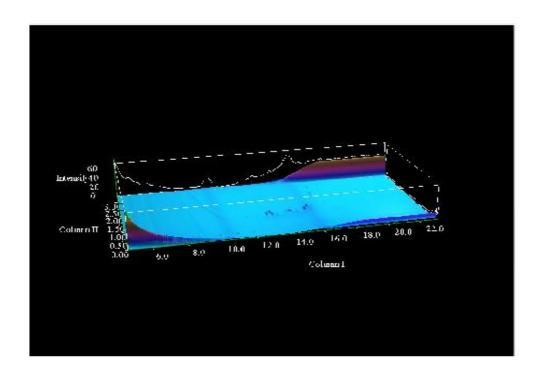
Client: HSP Consulting Engineers Limited		Che	mtest Jo	ob No.:	22-43062	22-43062	22-43062	22-43062	22-43062	22-43062	22-43062	22-43062
Quotation No.:		Chemte	est Sam	nle ID ·	1542116	1542118	1542119	1542120	1542122	1542123	1542124	1542126
Quotation No	'		ample Lo		WS01	WS02	WS03	WS04	WS06	WS07	WS07	WS09
		- 0,	_	e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top Dep		0.40	0.30	0.40	0.40	0.40	0.30	0.90	0.90
			Date Sa		02-Nov-2022	02-Nov-2022	02-Nov-2022	02-Nov-2022	02-Nov-2022	02-Nov-2022	02-Nov-2022	02-Nov-2022
			Asbest		02 110V 2022	DURHAM	02 NOV 2022	02 NOV 2022	02 NOV 2022	DURHAM	02 NOV 2022	02 NOV 2022
Determinand	Accred.	SOP	Units	LOD		BOTTIVI				DOTALITATIVE		
Aromatic TPH >C10-C12	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
Aromatic TPH >C12-C16	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
Aromatic TPH >C16-C21	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
Aromatic TPH >C21-C35	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0		
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	< 10	< 10	< 10	< 10	< 10	< 10		
Benzene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
Toluene	Ü	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
Ethylbenzene	Ü	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
m & p-Xylene	Ü	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
o-Xylene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		
Naphthalene	Ü	2800	mg/kg	0.10	< 0.10	0.19	< 0.10	< 0.10	< 0.10	< 0.10		
Acenaphthylene	N	2800	mg/kg	0.10	< 0.10	0.11	< 0.10	< 0.10	< 0.10	< 0.10		
Acenaphthene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10		
Fluorene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10		
Phenanthrene	Ü	2800	mg/kg	0.10	< 0.10	0.16	< 0.10	< 0.10	< 0.10	< 0.10		
Anthracene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10		
Fluoranthene	U	2800	mg/kg	0.10	< 0.10	0.41	< 0.10	< 0.10	< 0.10	0.13		
Pyrene	U	2800	mg/kg	0.10	< 0.10	0.34	< 0.10	< 0.10	< 0.10	0.13		
Benzo[a]anthracene	U	2800	mg/kg	0.10	< 0.10	0.21	< 0.10	< 0.10	< 0.10	< 0.10		
Chrysene	U	2800	mg/kg	0.10	< 0.10	0.21	< 0.10	< 0.10	< 0.10	< 0.10		
Benzo[b]fluoranthene	Ü	2800	mg/kg	0.10	< 0.10	0.23	< 0.10	< 0.10	< 0.10	< 0.10		
Benzo[k]fluoranthene	Ü	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10		
Benzo[a]pyrene	Ü	2800	mg/kg	0.10	< 0.10	0.28	< 0.10	< 0.10	< 0.10	< 0.10		
Indeno(1,2,3-c,d)Pyrene	U	2800	mg/kg	0.10	< 0.10	0.20	< 0.10	< 0.10	< 0.10	< 0.10		
Dibenz(a,h)Anthracene	N	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10		
Benzo[g,h,i]perylene	U	2800	mg/kg	0.10	< 0.10	0.18	< 0.10	< 0.10	< 0.10	< 0.10		
Total Of 16 PAH's	N	2800	mg/kg	2.0	< 2.0	2.5	< 2.0	< 2.0	< 2.0	< 2.0		
Total Phenols	U	2920		0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10		

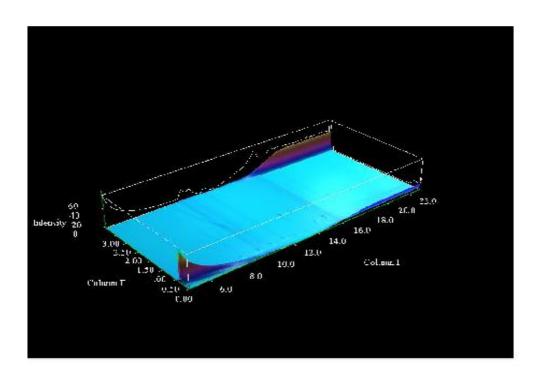

Client: HSP Consulting Engineers Limited		Che	mtest Jo	ob No.:	22-43062	22-43062	22-43062	22-43062	22-43062	22-43062
Quotation No.:		Chemte	st Sam	ple ID.:	1542127	1542128	1542130	1542131	1542132	1542133
		Sa	ample Lo	cation:	WS10	WS10	WS11	WS11	WS12	WS12
			Sampl	е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top Dep	oth (m):	0.10	0.60	0.20	0.70	0.40	0.80
			Date Sa	ampled:	02-Nov-2022	02-Nov-2022	02-Nov-2022	02-Nov-2022	02-Nov-2022	02-Nov-2022
			Asbest	os Lab:	DURHAM		DURHAM			
Determinand	Accred.	SOP	Units	LOD						
ACM Type	U	2192		N/A	-		-			
Asbestos Identification	U	2192		N/A	No Asbestos Detected		No Asbestos Detected			
Moisture	N	2030	%	0.020	6.9	11	19	10	18	17
Chromatogram (TPH)	N			N/A	See Attached	See Attached	See Attached	See Attached	See Attached	See Attached
pH	U	2010		4.0	8.9	8.1	8.0	8.1	7.7	8.1
Boron (Hot Water Soluble)	U	2120	mg/kg	0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40	< 0.40
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Total Sulphur	U	2175	%	0.010	0.050	0.025	0.48	0.013	0.037	0.020
Cyanide (Total)	U	2300	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Sulphide (Easily Liberatable)	N	2325	mg/kg	0.50	8.2	1.0	1.1	2.1	0.80	4.9
Sulphate (Total)	U	2430	mg/kg	100	1400	360	20000	210	23000	22000
Arsenic	U	2455	mg/kg	0.5	2.5	5.3	2.8	5.7	2.8	2.3
Cadmium	U	2455	mg/kg	0.10	0.13	< 0.10	0.18	< 0.10	< 0.10	< 0.10
Chromium	U	2455	mg/kg	0.5	2.8	8.5	4.1	11	20	16
Antimony	N	2455	mg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Copper	U	2455	mg/kg	0.50	2.8	12	7.1	14	9.4	7.6
Mercury	U	2455	mg/kg	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Nickel	U	2455	mg/kg	0.50	3.7	9.6	6.3	11	18	14
Lead	U	2455	mg/kg	0.50	7.4	10	87	6.8	6.6	5.1
Selenium	U	2455	mg/kg	0.25	0.38	0.55	0.35	0.37	0.68	0.55
Vanadium	U	2455	mg/kg	0.5	3.8	7.2	4.2	8.4	20	17
Zinc	U	2455	mg/kg	0.50	7.8	30	22	28	29	24
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
LOI	U	2610	%	0.10	0.60	3.8	12	3.5	5.0	3.8
Organic Matter	U	2625	%	0.40	11	0.54	86	0.42	2.8	1.1
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C12-C16	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C16-C21	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C21-C35	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C8-C10	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

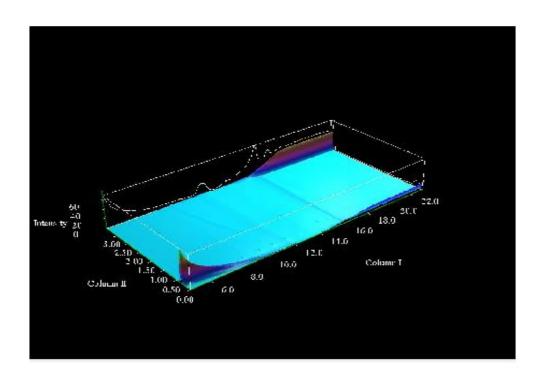

Client: HSP Consulting Engineers Limited		Che	mtest Jo	ob No.:	22-43062	22-43062	22-43062	22-43062	22-43062	22-43062
Quotation No.:	(Chemte	st Sam	ple ID.:	1542127	1542128	1542130	1542131	1542132	1542133
		Sample Location:		WS10	WS10	WS11	WS11	WS12	WS12	
			Sampl	е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top Dep		0.10	0.60	0.20	0.70	0.40	0.80
			Date Sa	ampled:	02-Nov-2022	02-Nov-2022	02-Nov-2022	02-Nov-2022	02-Nov-2022	02-Nov-2022
			Asbest	os Lab:	DURHAM		DURHAM			
Determinand	Accred.	SOP	Units	LOD						
Aromatic TPH >C10-C12	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C12-C16	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C16-C21	N	2680	mg/kg	1.0	< 1.0	< 1.0	13	< 1.0	< 1.0	< 1.0
Aromatic TPH >C21-C35	N	2680	mg/kg	1.0	< 1.0	< 1.0	200	< 1.0	< 1.0	< 1.0
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	210	< 5.0	< 5.0	< 5.0
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	< 10	< 10	210	< 10	< 10	< 10
Benzene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene	U	2760	μg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Naphthalene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthylene	N	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Anthracene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluoranthene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Pyrene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]anthracene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Chrysene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[b]fluoranthene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[k]fluoranthene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[a]pyrene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene	N	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene	U	2800	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Of 16 PAH's	N	2800	mg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Total Phenols	U	2920	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10

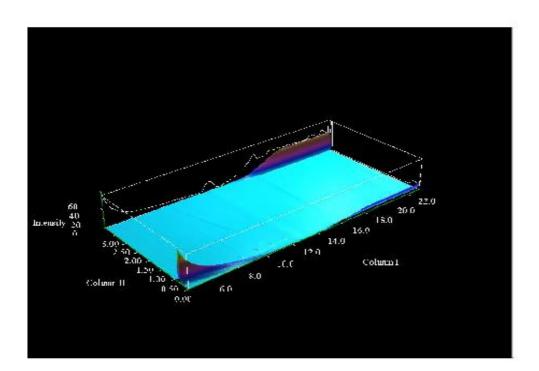












Test Methods

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	рН	pH Meter
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2175	Total Sulphur in Soils	Total Sulphur	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2325	Sulphide in Soils	Sulphide	Steam distillation with sulphuric acid / analysis by 'Aquakem 600' Discrete Analyser, using N,N–dimethyl-p-phenylenediamine.
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.
2455	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2610	Loss on Ignition	loss on ignition (LOI)	Determination of the proportion by mass that is lost from a soil by ignition at 550°C.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2680	TPH A/A Split	Aliphatics: >C5-C6, >C6-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44Aromatics: >C5-C7, >C7-C8, >C8-C10, >C10-C12, >C12-C16, >C16-C21, >C21-C35, >C35-C44	Dichloromethane extraction / GCxGC FID detection
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.

Report Information

Key **UKAS** accredited MCERTS and UKAS accredited M Unaccredited Ν This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis This analysis has been subcontracted to an unaccredited laboratory Τ I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated < "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

eurofins Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Final Report

Report No.: 22-43818-1

Initial Date of Issue: 18-Nov-2022

Client HSP Consulting Engineers Limited

Client Address: Lawrence House

Meadowbank Way

Eastwood

Nottinghamshire

NG16 3SB

Contact(s): Norezrin Shafii

Project C4103 Coleg Sir Gar - Pibrwlwyd

Campus

Quotation No.: Date Received: 15-Nov-2022

Order No.: Date Instructed: 15-Nov-2022

No. of Samples: 6

Turnaround (Wkdays): 5 Results Due: 21-Nov-2022

Date Approved: 18-Nov-2022

Approved By:

Details: Stuart Henderson, Technical

Manager

Results - Soil

Project: C4103 Coleg Sir Gar - Pibrwlwyd Campus

Client: HSP Consulting Engineers Limited		Chei	ntest Jo	ob No.:	22-43818	22-43818	22-43818	22-43818	22-43818	22-43818
Quotation No.:	(Chemte	st Sam	ple ID.:	1545604	1545605	1545606	1545607	1545608	1545609
		Sa	ample Lo	ocation:	WS02	WS04	WS06	WS09	WS10	WS11
			Sampl	е Туре:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top Dep	oth (m):	1.70	1.80	1.80	3.90	2.90	1.80
			Date Sa	ampled:	02-Nov-2022	03-Nov-2022	03-Nov-2022	01-Nov-2022	02-Nov-2022	02-Nov-2022
Determinand	Accred.	SOP	Units	LOD						
Moisture	N	2030	%	0.020	8.1	6.6	8.5	8.3	8.6	14
pH	U	2010		4.0	7.6	7.5	7.6	6.6	5.6	6.7
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010

Test Methods

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	рН	pH Meter
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES

Report Information

Key **UKAS** accredited MCERTS and UKAS accredited M Unaccredited Ν This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Т This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated < "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

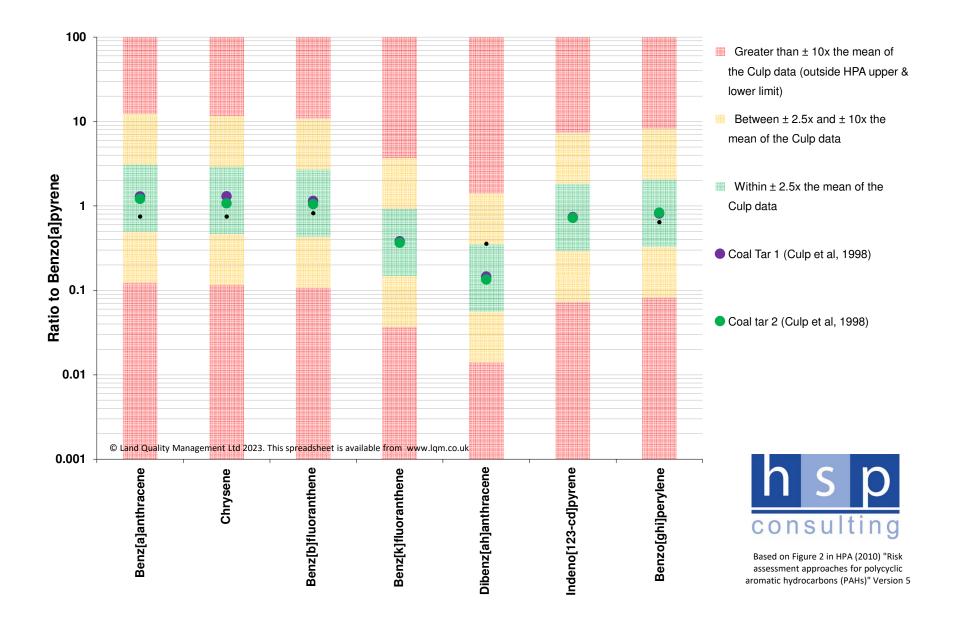
For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)


Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

Appendix VI

LABORATORY REPORT

4043

Contract Number: PSL22/7592

Report Date: 14 December 2022

Client's Reference:

Client Name: HSP Consulting

Lawrence House 4 Meadowbank Way

Eastwood Nottingham NG16 3SB

For the attention of: Ezrin Shafli

Contract Title: Coleg Sir Gar - Pibwrlwyd Campus

Date Received: 28/11/2022 Date Commenced: 28/11/2022

A copy of the Laboratory Schedule of accredited tests as issued by UKAS is attached to this report. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced other than in full, without the prior written approval of the laboratory.

Checked and Approved Signatories:

A Watkins R Berriman S Royle (Director) (Quality Manager) (Laboratory Manager)

Att.

L Knight S Eyre M Fennell
(Assistant Laboratory Manager) (Senior Technician) (Senior Technician)

Page 1 of

5 – 7 Hexthorpe Road, Hexthorpe,

Doncaster DN4 0AR tel: +44 (0)844 815 6641 fax: +44 (0)844 815 6642

e-mail: rberriman@prosoils.co.uk awatkins@prosoils.co.uk

SUMMARY OF LABORATORY SOIL DESCRIPTIONS

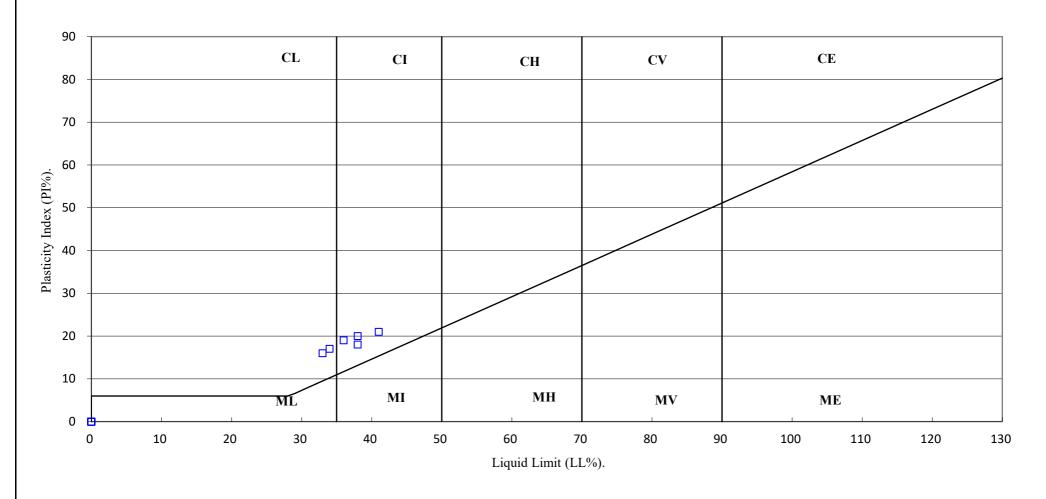
Hole Number	Sample Number	Sample Type	Top Depth m	Base Depth m	Description of Sample
WS01		D	1.70		Brown gravelly sandy CLAY.
WS04		D	1.10		Brown very gravelly very sandy CLAY.
WS06		D	0.80		Grey GRAVEL.
WS09		D	1.20		Brown gravelly sandy CLAY.
WS10		D	1.70		Brown very gravelly very sandy CLAY.
WS12		D	1.30		Brown slightly gravelly sandy CLAY.
WS12		D	2.20		Brown slightly gravelly sandy CLAY.

Coleg Sir Gar - Pibwrlwyd Campus

Contract No:
PSL22/7592
Client Ref:
_

SUMMARY OF SOIL CLASSIFICATION TESTS

(BS1377: PART 2: 1990)


Hole Number	Sample Number	Sample Type	Top Depth	Base Depth	Moisture Content %	Linear Shrinkage %	Particle Density Mg/m ³	Liquid Limit %	Plastic Limit %	Plasticity Index %	Passing .425mm %	Remarks
			m	m	Clause 3.2	Clause 6.5	Clause 8.2	Clause 4.3/4	Clause 5.3	Clause 5.4		
WS01		D	1.70		15			41	20	21	87	Intermediate Plasticity CI
WS04		D	1.10		16			34	17	17	67	Low Plasticity CL
WS06		D	0.80		4.1				NP			
WS09		D	1.20		12			38	18	20	87	Intermediate Plasticity CI
WS10		D	1.70		10			33	17	16	64	Low Plasticity CL
WS12		D	1.30		19			38	20	18	96	Intermediate Plasticity CI
WS12		D	2.20		12			36	17	19	99	Intermediate Plasticity CI

SYMBOLS: NP: Non Plastic

^{*:} Liquid Limit and Plastic Limit Wet Sieved.

PLASTICITY CHART FOR CASAGRANDE CLASSIFICATION.

Results Summary

Apex Testing Solutions Limited

Sturmi Way Village Farm Industrial Estate

Pyle Bridgend CF33 6BZ

Telephone: 01656 746762

E-mail: andrew.grogan@apex-drilling.com laura.davis@apex-drilling.com

Reporting Details		Key Information	
Company Name:	HSP Consulting	Site Name:	Pibwrlwyd Campus
Address:	Lawrence House	Job Number:	D22546
	Unit 6, Meadowbank Way	Date Received:	21/11/2022
	Nottingham	Job Coordinator:	A. Grogan
	NG16 3SB		
Contact Name:	Linden Baker		
Contact Number:			

Item No.	Tests Undertaken	Number of Tests
1 Moisture 2 Atterburg	Content - BS1377 -2: 1990 Limits (4 point) - BS1377-2: 1990 Size Distribution - BS1377-2: 1990	7 5 1

Results Issued: 25/11/2022

Comments

Results herein relate only to samples received in the laboratory and where not sampled by Apex Testing Solutions personnel relate to the samples as received.

Where tests are UKAS accredited any Opinion and/or Interpretation expressed herein are outside the scope of the UKAS Accreditation. The reports shall not be reproduced in full without the written approval of the laboratory.

Please contact the job coordinator should any further information be required.

Determination Of Water Content

ISO 17892-1: 2014

Project No: D22546

Project Name: Pibwrlwyd Campus

Client:

HSP Consulting

Address: Lawrence House

Unit 6, Meadowbank Way

Nottingham

ATS Sample No: 30461

NG16 3SB

Site Ref / Hole ID:

CP1A

Depth (m):

0.30

1.00

Sample No:

Received:

Sample Type:

Disturbed

Brown slightly sandy

No

Material Description:

slightly gravelly CLAY

Location in Works:

Sampling Certificate

N/A

Material Source:

Site Generated

Date Sampled:

Unknown

Material Supplier:

Site Generated

Sampled By:

Client

Specification:

BS1377

Date Received:

21 November 2022

Date Tested:

22 November 2022

Test Results

Moisture Content (%)

15.4

Remarks:

QA Ref.

EN ISO 17892-1:2014 E

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ

Tel: 01656 746762 Fax: 01656 749096

Approver

Date

Fig

G Llewellyn

25/11/2022

МС

LIQUID LIMIT, PLASTIC LIMIT & PLASTICITY INDEX

Clause 4.3/5.3/5.4 BS 1377:Part 2:1990.

Project No:

D22546

Client: HSP Consulting

Project Name:

Pibwrlwyd Campus

Address: Lawrence House

Unit 6, Meadowbank Way

Nottingham

ATS Sample No:

30461

NG16 3SB

Site Ref / Hole ID:

CP1A

Depth (m):

0.30

- 1.00

Sample No:

Sample Type:

Disturbed

Sampling Certificate No Received:

Material Description:

Brown slightly sandy slightly

gravelly CLAY

Location in Works:

N/A

Material Source:

Site Generated

Date Sampled:

Unknown

Material Supplier:

Site Generated

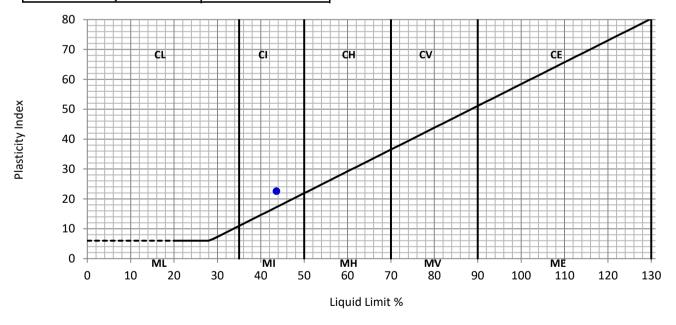
Sampled By:

Client

Specification:

BS1377

Date Received:


21 November 2022

23 November 2022 **Date Tested:**

Test Results

Liquid Limit	44	%
Plastic Limit	21	%
Plasticity Index	23	%

Preparation:	4.2.4 Sieved Spe	cimen	
Proportion retained	d on 425µm sieve:	50	%

Remarks:

QA Ref.

BS1377 - 2 Rev. 3.0

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ Tel: 01656 746762 Fax: 01656 749096

Approver

G Llewellyn

Date

25/11/2022

ATT

Fig.

Determination Of Water Content

ISO 17892-1: 2014

Project No: D22546

Project Name: Pibwrlwyd Campus

Client: HSP Consulting

Address: Lawrence House

Unit 6, Meadowbank Way

Nottingham

ATS Sample No: 30462

NG16 3SB

Site Ref / Hole ID:

Sampling Certificate

CP2

Depth (m):

0.50

1.00

Sample No:

Received:

No

Sample Type:

Disturbed

Material Description:

Greenish brown slightly

sandy slightly gravelly

CLAY

Location in Works:

N/A

Material Source:

Site Generated

Date Sampled:

Unknown

Material Supplier:

Site Generated

Sampled By:

Client

Specification:

BS1377

Date Received:

21 November 2022

Date Tested:

22 November 2022

Test Results

Moisture Content (%)

26.6

Remarks:

QA Ref.

EN ISO 17892-1:2014 E

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ

Tel: 01656 746762 Fax: 01656 749096

Approver

Date

Fig

G Llewellyn

25/11/2022

MC

LIQUID LIMIT, PLASTIC LIMIT & PLASTICITY INDEX

Clause 4.3/5.3/5.4 BS 1377:Part 2:1990.

Project No:

D22546

Client: HSP Consulting

Project Name:

Pibwrlwyd Campus

Address: Lawrence House

Unit 6, Meadowbank Way

Nottingham

ATS Sample No:

30462

NG16 3SB

Site Ref / Hole ID:

CP2

Depth (m):

0.50

- 1.00

Sample No:

Sample Type:

Disturbed

Sampling Certificate No Received:

Material Description:

Greenish brown slightly

sandy slightly gravelly CLAY

Location in Works:

N/A

Material Source:

Site Generated

Date Sampled:

Unknown

Material Supplier:

Site Generated

Sampled By:

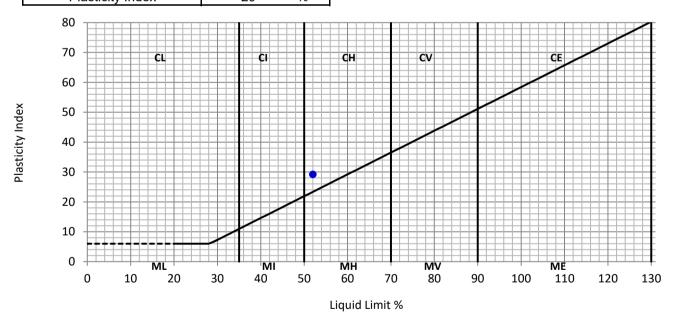
Client

Specification:

BS1377

Date Received:

21 November 2022


Date Tested:

24 November 2022

Test Results

Liquid Limit	52	%
Plastic Limit	23	%
Plasticity Index	29	%

Preparation:	4.2.4 Sieved Spe	cimen	
Proportion retaine	d on 425µm sieve:	23	%

Remarks:

QA Ref.

BS1377 - 2 Rev. 3.0

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ Tel: 01656 746762 Fax: 01656 749096

Approver

G Llewellyn

G Llewellyn, Senior Technician

Date

25/11/2022

ATT

Fig.

Determination Of Water Content

ISO 17892-1: 2014

Project No: D22546

Project Name: Pibwrlwyd Campus

Client: HSP Consulting

Address: Lawrence House

Unit 6, Meadowbank Way

Nottingham

ATS Sample No: 30463

NG16 3SB

Site Ref / Hole ID:

CP2

No

Depth (m):

1.50

Sample No:

Sample Type:

Disturbed

Sampling Certificate

Received:

Material Description:

Light brown slightly gravelly slightly sandy

CLAY

Location in Works:

N/A

Material Source:

Site Generated

Date Sampled:

Unknown

Material Supplier:

Site Generated

Sampled By:

Client

Specification:

BS1377

Date Received:

21 November 2022

Date Tested:

22 November 2022

Test Results

Moisture Content (%)

17.1

Remarks:

QA Ref.

EN ISO 17892-1:2014 E

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ

Tel: 01656 746762 Fax: 01656 749096

Approver

Date

Fig

G Llewellyn

25/11/2022

MC

LIQUID LIMIT, PLASTIC LIMIT & PLASTICITY INDEX

Clause 4.3/5.3/5.4 BS 1377:Part 2:1990.

Project No:

D22546

Client: HSP Consulting

Project Name:

Pibwrlwyd Campus

Address: Lawrence House

Unit 6, Meadowbank Way

Nottingham

ATS Sample No:

30463

NG16 3SB

Site Ref / Hole ID:

CP2

Depth (m):

1.50

Disturbed

Sample No:

Sample Type:

Received:

Sampling Certificate No

Material Description:

Light brown slightly gravelly

slighty sandy CLAY

Location in Works:

N/A

Material Source:

Site Generated

Date Sampled:

Unknown

Material Supplier:

Site Generated

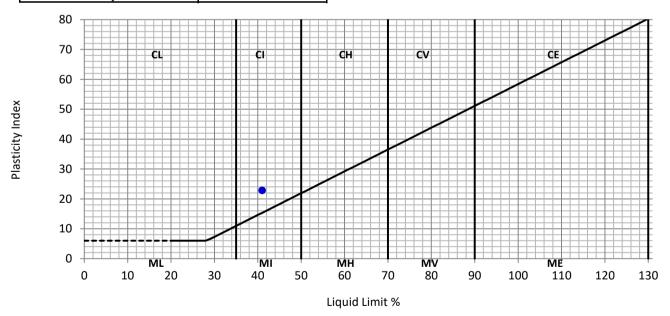
Sampled By:

Client

Specification:

BS1377

Date Received:


21 November 2022

24 November 2022 **Date Tested:**

Test Results

Liquid Limit	41	%
Plastic Limit	18	%
Plasticity Index	23	%

Preparation:	4.2.4 Sieved Spe	cimen	
Proportion retaine	d on 425µm sieve:	42	%

Remarks:

QA Ref.

BS1377 - 2 Rev. 3.0

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ Tel: 01656 746762 Fax: 01656 749096

Approver

G Llewellyn

G Llewellyn, Senior Technician

Date

Fig.

25/11/2022

ATT

Determination Of Water Content

ISO 17892-1: 2014

Project No: D22546

Project Name: Pibwrlwyd Campus

Client: HSP Consulting
Address: Lawrence House

Unit 6, Meadowbank Way

Nottingham

ATS Sample No: 30464 NG16 3SB

Site Ref / Hole ID: CP2 Depth (m): 3.50

Sample No: Sample Type: Disturbed

Sampling Certificate No Material Description: Grey slightly sandy

Received: slightly gravelly CLAY

Location in Works: N/A Material Source: Site Generated

Date Sampled: Unknown Material Supplier: Site Generated

Sampled By: Client Specification: BS1377

Date Received: 21 November 2022 **Date Tested:** 22 November 2022

Test Results

Moisture Content (%) 11.8

Remarks:

QA Ref.

EN ISO 17892-1:2014 E

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ

Tel: 01656 746762 Fax: 01656 749096

Approver

Date

Fig

G Llewellyn

25/11/2022

MC

Determination Of Water Content

ISO 17892-1: 2014

Project No: D22546

Project Name: Pibwrlwyd Campus Client: **HSP Consulting** Address:

Lawrence House

Unit 6, Meadowbank Way

Nottingham ATS Sample No: 30465

NG16 3SB

Site Ref / Hole ID:

CP3

Depth (m):

0.50

1.00

Sample No:

Sample Type:

Disturbed

Grey slightly sandy

Sampling Certificate

Received:

No

Material Description:

slightly gravelly CLAY

Location in Works:

N/A

Material Source:

Site Generated

Date Sampled:

Unknown

Material Supplier:

Site Generated

Sampled By:

Client

Specification:

BS1377

Date Received:

21 November 2022

Date Tested:

22 November 2022

Test Results

Moisture Content (%)

18.4

Remarks:

QA Ref.

EN ISO 17892-1:2014 E

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ

Tel: 01656 746762 Fax: 01656 749096

Approver

Date

Fig

G Llewellyn

25/11/2022

MC

Determination Of Water Content

ISO 17892-1: 2014

Project No: D22546

Project Name: Pibwrlwyd Campus

Client: HSP Consulting

Address: Lawrence House

Unit 6, Meadowbank Way

Nottingham

ATS Sample No: 30466

NG16 3SB

Site Ref / Hole ID:

CP3

Depth (m):

1.50

Sample No:

Sample Type:

Disturbed

Sampling Certificate

Received:

No

Material Description:

Greenish grey sandy

clayey GRAVEL

Location in Works:

N/A

Material Source:

Site Generated

Date Sampled:

Unknown

Material Supplier:

Site Generated

Sampled By:

Client

Specification:

BS1377

Date Received:

21 November 2022

Date Tested:

22 November 2022

Test Results

Moisture Content (%)

16.6

Remarks:

QA Ref.

EN ISO 17892-1:2014 E

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ

Tel: 01656 746762 Fax: 01656 749096

Approver

Date

Fig

25/11/2022

MC

G Llewellyn, Senior Technician

G Llewellyn

LIQUID LIMIT, PLASTIC LIMIT & PLASTICITY INDEX

Clause 4.3/5.3/5.4 BS 1377:Part 2:1990.

Project No:

D22546

Client:

Project Name:

Pibwrlwyd Campus

Address:

Lawrence House

HSP Consulting

Unit 6, Meadowbank Way

Nottingham

ATS Sample No:

30466

NG16 3SB

Site Ref / Hole ID:

CP3

Depth (m):

1.50

Sample No:

Sample Type:

Disturbed

Received:

Sampling Certificate No

Material Description:

Greenish grey sandy clayey

GRAVEL

Location in Works:

N/A

Material Source:

Site Generated

Date Sampled:

Unknown

Material Supplier:

Site Generated

Sampled By:

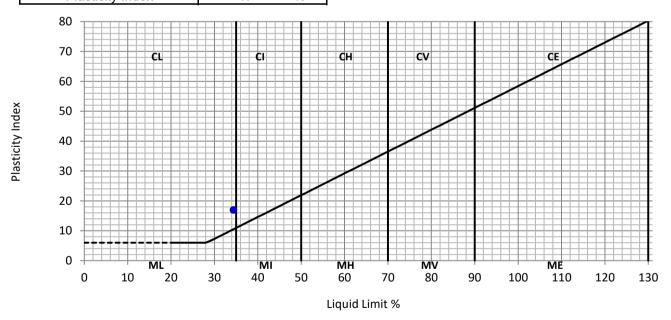
Client

Specification:

BS1377

Date Received:

21 November 2022


Date Tested:

24 November 2022

Test Results

Liquid Limit	34	%
Plastic Limit	17	%
Plasticity Index	17	%

Preparation:	4.2.4 Sieved Spe	cimen	
Proportion retained	ed on 425µm sieve:	73	%

Remarks:

QA Ref.

BS1377 - 2 Rev. 3.0

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ Tel: 01656 746762 Fax: 01656 749096

Approver

G Llewellyn

G Llewellyn, Senior Technician

Date

25/11/2022

Fig.

ATT

PARTICLE SIZE DISTRIBUTION ANALYSIS

BS1377:Part 2:1990

Project No: Project Name: D22546

Pibwrlwyd Campus

Client:

HSP Consulting

Address

Lawrence House

Unit 6, Meadowbank Way

Nottingham

ATS Sample No:

30467

NG16 3SB

Site Ref / Hole ID:

PSD

Depth (m):

6.30 - 6.50

Sample No:

Sample Type:

Bulk

Sampling Certificate

Received:

No

Material Description:

Grey clayey very sandy GRAVEL

Location in Works:

N/A

Material Source:

Site Generated

Date Sampled:

Unknown

Material Supplier:

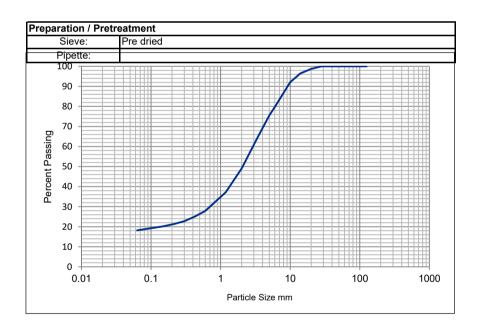
Site Generated

Sampled By:

Client

Specification:

BS1377


Date Received:

21 November 2022

Date Tested: 23 November 2022

Test Results

Sie	ving
Particle Size	% Passing
mm	ŭ
125	100
90	100
75	100
63	100
50	100
37.5	100
28	100
20	99
14	96
10	92
6.3	81
5.0	75
3.35	64
2.00	49
1.18	37
0.600	28
0.425	25
0.300	23
0.212	21
0.150	20
0.063	18

Sample Porti	ons	Particle Density Mg/m3	Uniformity Coefficient
Cobbles / Boulders	0	N/A	Officiality Coefficient
Gravel	51	IN/A	D ₆₀ / D ₁₀
Sand	31	Dry mass of sample, kg	D ₆₀ / D ₁₀
Silt / Clay	18	4.0	n/a

Remarks:

QA Ref. BS1377 - 4 Rev. 2.0

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ Tel: 01656 746762 Fax: 01656 749096

UKAS	handand
7771	

Approver

G Llewellyn

Date

G Llewellyn, Senior Technician

14/10/2022

PSD

Determination Of Water Content

ISO 17892-1: 2014

Project No: D22546

Project Name: Pibwrlwyd Campus

Client: HSP Consulting

Address: Lawrence House

Unit 6, Meadowbank Way

Nottingham

ATS Sample No: 30473

NG16 3SB

Site Ref / Hole ID:

CP1A

Depth (m):

2.50

Sample No:

Sample Type:

Disturbed

Sampling Certificate

Received:

No

Material Description:

Greenish brown sandy

clayey GRAVEL

Location in Works:

N/A

Material Source:

Site Generated

Date Sampled:

Unknown

Material Supplier:

Site Generated

Sampled By:

Client

Specification:

BS1377

Date Received:

21 November 2022

Date Tested:

22 November 2022

Test Results

Moisture Content (%)

15.0

Remarks:

QA Ref.

EN ISO 17892-1:2014 E

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ

Tel: 01656 746762 Fax: 01656 749096

Approver

Date

Fig

G Llewellyn

25/11/2022

MC

777

LIQUID LIMIT, PLASTIC LIMIT & PLASTICITY INDEX

Clause 4.3/5.3/5.4 BS 1377:Part 2:1990.

Project No:

D22546

Client:

Project Name:

Pibwrlwyd Campus

Address:

HSP Consulting

Lawrence House

Unit 6, Meadowbank Way

Nottingham

ATS Sample No:

30473

NG16 3SB

Site Ref / Hole ID:

CP1A

Depth (m):

2.50

Sample No:

Sample Type:

Received:

Sampling Certificate No

Material Description:

Greenish brown sandy clayey

GRAVEL

Disturbed

Location in Works:

N/A

Material Source:

Site Generated

Date Sampled:

Unknown

Material Supplier:

Site Generated

Sampled By:

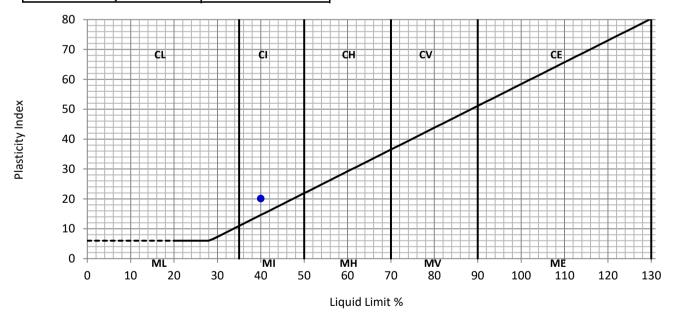
Client

Specification:

BS1377

Date Received:

21 November 2022


Date Tested:

24 November 2022

Test Results

Liquid Limit	40	%
Plastic Limit	20	%
Plasticity Index	20	%

Preparation:	4.2.4 Sieved Spe	ecimen	
Proportion retained	on 425µm sieve:	71	%

Remarks:

QA Ref.

BS1377 - 2 Rev. 3.0

Apex Testing Solutions

Sturmi Way, Village Farm Industrial Est, Pyle, Bridgend, CF33 6BZ Tel: 01656 746762 Fax: 01656 749096

Approver

G Llewellyn

Date

25/11/2022

Fig.

G Llewellyn, Senior Technician

ATT

Appendix VII

Project Number Project Name Client	C4103 Pibwrlwy Gleeds	/d Camp	us						CI	P2
				Det	ection I	₋imit				
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppn	Depth of Installation. (mbgl)	Depth of Groundwater (mbgl
00:00	0.1	<0.1	<0.1	20.1	<0.1	<1	<1	<0.1	4.00	2.15
00:15	0.1	<0.1	<0.1	18.7	<0.1	<1	<1	<0.1		
00:30	0.1	<0.1	<0.1	18.4	<0.1	<1	<1	<0.1		
00:45	0.1	<0.1	<0.1	18.4	<0.1	<1	<1	<0.1		
01:00	0.1	<0.1	<0.1	18.4	<0.1	<1	<1	<0.1		
01:15	0.1	<0.1	<0.1	18.4	<0.1	<1	<1	<0.1		
01:30	0.1	<0.1	<0.1	18.4	<0.1	<1	<1	<0.1		
01:45	0.1	<0.1	<0.1	18.4	<0.1	<1	<1	<0.1		
02:00	0.1	<0.1	<0.1	18.4	<0.1	<1	<1	<0.1		
02:15	0.1	<0.1	<0.1	18.4	<0.1	<1	<1	<0.1		
02:30	0.1	<0.1	<0.1	18.4	<0.1	<1	<1	<0.1		
02:45	0.1	<0.1	<0.1	18.4	<0.1	<1	<1	<0.1		
03:00	0.1	<0.1	<0.1	18.4	<0.1	<1	<1	<0.1		
03:15	0.1	<0.12	<0.1	18.4	<0.1	<1	<1	<0.1		
03:30	0.1	<0.1	<0.1	18.4	<0.1	<1	<1	<0.1		
03:45	0.1	<0.1	<0.1	18.4	<0.1	<1	<1	<0.1		
04:00	0.1	<0.1	<0.1	18.4	<0.1	<1	<1	<0.1		
04:15										
04:30										
04:45										
05:00							_			
Steady Peak	0.1	<0.1 0.0	<0.1 0.0	18.4 20.1	<0.1 0.0	<1 0.0	<1 0.0	<0.1 0.0	4.00 4.00	2.15 2.15
	0.1			20.1	0.0	0.0	0.0	0.0	4.00	2.15
Date 11.011.2022	Engine	Not er	LAB		Baro	metric	Pressure	e, mbar	10)17
							ire Tren			sing
	Equipm	quipment GFM430 Air Temp (°C)						1	L 5	

C4103 Pibwrlwyd Ca Project Number

Project Name Client	Pibwrlv Gleeds	Pibwrlwyd Campus Gleeds							WS	509
		Detection Limit								
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppr	Depth of Installation. (mbgl)	Depth of Groundwater (mbg
00:00	0.1	<0.1	<0.1	16.0	2	<1	<1	<0.1	4.00	3.20
00:15	0.1	<0.1	<0.1	16.0	2	<1	<1	<0.1		
00:30	0.1	<0.1	<0.1	16.0	2.2	<1	<1	<0.1		
00:45	0.1	<0.1	<0.1	16.0	2.2	<1	<1	<0.1		
01:00	0.1	<0.1	<0.1	16.0	2.2	<1	<1	<0.1		
01:15	0.1	<0.1	<0.1	16.0	2.2	<1	<1	<0.1		
01:30	0.1	<0.1	<0.1	16.0	2.2	<1	<1	<0.1		
01:45	0.1	<0.1	<0.1	16.0	2.2	<1	<1	<0.1		
02:00	0.1	<0.1	<0.1	16.0	2.2	<1	<1	<0.1		
02:15	0.1	<0.1	<0.1	16.0	2.2	<1	<1	<0.1		
02:30	0.1	<0.1	<0.1	16.0	2.2	<1	<1	<0.1		
02:45	0.1	<0.1	<0.1	16.0	2.2	<1	<1	<0.1		
03:00	0.1	<0.1	<0.1	16.0	2.2	<1	<1	<0.1		
03:15	0.1	<0.1	<0.1	16.0	2.2	<1	<1	<0.1		
03:30	0.1	<0.1	<0.1	16.0	2.2	<1	<1	<0.1		
03:45	0.1	<0.1	<0.1	16.0	2.2	<1	<1	<0.1		
04:00	0.1	<0.1	<0.1	16.0	2.2	<1	<1	<0.1		
04:15	11	Ш								
04:30	11	<u> </u>								
04:45	11	<u> </u>								
05:00	Ш	Ш								
Steady	0.1	<0.1	<0.1	16.0	2.2	<1	<1	<0.1	4.00	3.20
Peak	0.1	0.0	0.0	16.0	2.2	0.0	0.0	0.0	4.00	3.20
Date 11.011.2022	Engin	Notes: Engineer LAB			Barometric Pressure, mbar Pressure Trend				017 Sing	
	Equip	ment	GFM43	30			emp (°C)			L5

Project Number C4103

Project Name Pibwrlwyd Campus

WS12

Gleeds	ibwrlwyd Campus ileeds						VV	512	
	Detection Limit								
	<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppr	Depth of Installation. (mbgl)	Depth of Groundwater (mbg
0.1	<0.1	<0.1	5.7	1.2	<1	<1	<0.1	3.65	1.52
0.1	<0.1	<0.1	5.4	1.4	<1	<1	<0.1		
0.1	<0.1	<0.1	5.3	1.4	<1	<1	<0.1		
0.1	<0.1	<0.1	5.3	1.4	<1	<1	<0.1		
0.1	<0.1	<0.1	5.3	1.4	<1	<1	<0.1		
0.1	<0.1	<0.1	5.3	1.4	<1	<1	<0.1		
0.1	<0.1	<0.1	5.3	1.4	<1	<1	<0.1		
0.1	<0.1	<0.1	5.3	1.4	<1	<1	<0.1		
0.1	<0.1	<0.1	5.3	1.4	<1	<1	<0.1		
0.1	<0.1	<0.1	5.3	1.4	<1	<1	<0.1		
0.1	<0.1	<0.1	5.3	1.4	<1	<1	<0.1		
0.1	<0.1	<0.1	5.3	1.4	<1	<1	<0.1		
0.1	<0.1	<0.1	5.3	1.4	<1	<1	<0.1		
0.1	<0.1	<0.1	5.3	1.4	<1	<1	<0.1		
0.1	<0.1	<0.1	5.3	1.4	<1	<1	<0.1		
0.1	<0.1	<0.1	5.3	1.4	<1	<1	<0.1		
0.1	<0.1	<0.1	5.3	1.4	<1	<1	<0.1		
0.1	<0.1	<0.1	5.3	1.4	<1	<1	<0.1	3.65	1.52
0.1	0.0	0.0	5.7	1.4	0.0	0.0	0.0	3.65	1.52
Engine	Notes: Engineer LAB			Barometric Pressure, mbar			10)17	
					Pressu	ıre Tren	d	Ris	sing
Fauinn	nent	GFM4	30		Air Te	emp (°C)	<u> </u>	1	L5
	Gleeds (I/µI) ightharpoonup	O.1 C.1 C.1	Gleeds Co.1 Co.1 Co.1 Co.1 Co.1 Co.1 Co.1 Co.1 Co.1 Co.1 Co.	O.1 C.1 C.1	Color Colo	Color Colo	Color Colo	Seeds	

Project Name	C4103 Pibwrlwy Gleeds									P2
Cheffe	Siccus			Dot	ection l	imit				
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
		10.12		=	B					
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppn	Depth of Installation. (mbgl)	Depth of Groundwater (mbgl
00:00	0.1	<0.1	<0.1	16.4	0.6	<1	<1	<0.1	4.00	3.55
00:15	0.1	<0.1	<0.1	13.2	0.6	<1	<1	<0.1		
00:30	0.1	<0.1	<0.1	13.2	0.6	<1	<1	<0.1		
00:45	0.1	<0.1	<0.1	13.2	0.6	<1	<1	<0.1		
01:00	0.1	<0.1	<0.1	13.2	0.6	<1	<1	<0.1		
01:15	0.1	<0.1	<0.1	13.2	0.6	<1	<1	<0.1		
01:30	0.1	<0.1	<0.1	13.2	0.6	<1	<1	<0.1		
01:45	0.1	<0.1	<0.1	13.2	0.6	<1	<1	<0.1		
02:00	0.1	<0.1	<0.1	13.2	0.6	<1	<1	<0.1		
02:15	0.1	<0.1	<0.1	13.2	0.6	<1	<1	<0.1		
02:30	0.1	<0.1	<0.1	13.2	0.6	<1	<1	<0.1		
02:45	0.1	<0.1	<0.1	13.2	0.6	<1	<1	<0.1		
03:00	0.1	<0.1	<0.1	13.2	0.6	<1	<1	<0.1		
03:15	0.1	<0.1	<0.1	13.2	0.6	<1	<1	<0.1		
03:30	0.1	<0.1	<0.1	13.2	0.6	<1	<1	<0.1		
03:45	0.1	<0.1	<0.1	13.2	0.6	<1	<1	<0.1		
04:00	0.1	<0.1	<0.1	13.2	0.6	<1	<1	<0.1		
04:15	1									
04:30	1									
04:45	1								1	
05:00	0.1									
Steady Peak	0.1	<0.1	<0.1 0.0	13.2 16.4	0.6	<1 0.0	<1 0.0	<0.1 0.0	4.00 4.00	3.55
								4.00	3.55	
Date 21.11.2022	Enginee	Not er	LAB		Baro	metric F	Pressure	e, mbar	982	
							re Tren			ady
	Equipm	ent	GFM43	30		Air Te	emp (°C)		,	9

Project Number C4103

Project Name Client	Pibwrlwy Gleeds	/d Camp	us						WS	509
				Det	ection I	₋imit				
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppr	Depth of Installation. (mbgl)	Depth of Groundwater (mbgl
00:00	0.1	<0.1	<0.1	15.3	2.7	<1	<1	<0.1	4.00	3.10
00:15	0.1	<0.1	<0.1	15.3	2.7	<1	1	<0.1		
00:30	0.1	<0.1	<0.1	15.5	2.7	<1	<1	<0.1		
00:45	0.1	<0.1	<0.1	15.5	2.7	<1	1	<0.1		
01:00	0.1	<0.1	<0.1	15.5	3.0	<1	<1	<0.1		
01:15	0.1	<0.1	<0.1	15.5	3.0	<1	<1	<0.1		
01:30	0.1	<0.1	<0.1	15.6	3.0	<1	<1	<0.1		
01:45	0.1	<0.1	<0.1	15.6	3.0	<1	<1	<0.1		
02:00	0.1	<0.1	<0.1	15.6	3.0	<1	<1	<0.1		
02:15	0.1	<0.1	<0.1	15.6	3.0	<1	<1	<0.1		
02:30	0.1	<0.1	<0.1	15.6	3.0	<1	<1	<0.1		
02:45	0.1	<0.1	<0.1	15.6	3.0	<1	1	<0.1		
03:00	0.1	<0.1	<0.1	15.6	3.0	<1	<1	<0.1		
03:15	0.1	<0.1	<0.1	15.6	3.0	<1	<1	<0.1		
03:30	0.1	<0.1	<0.1	15.6	3.0	<1	<1	<0.1		
03:45	0.1	<0.1	<0.1	15.6	3.0	<1	<1	<0.1		
04:00	0.1	<0.1	<0.1	15.6	3.0	<1	<1	<0.1		
04:15										
04:30										
04:45										
05:00										
Steady	0.1	<0.1	<0.1	15.6	3.0	<1	<1	<0.1	4.00	3.10
Peak	0.1	0.0	0.0	15.6	3.0	0.0	1.0	0.0	4.00	3.10
Date 21.11.2022	Engine	Not er	es: LAB		Barometric Pressure, mba			-		82
						Pressu	ire Tren	d	Steady	
	Equipm	ent	GFM43	30		Air Te	emp (°C))		9

Project Number C4103

Project Name Pibwrlwyd Campus

WS12

Project Name Client	Pibwrlwy Gleeds	/d Camp	us						W	S12
				Det	ection I	Limit				
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppr	Depth of Installation. (mbgl)	Depth of Groundwater (mbg
00:00	0.1	<0.1	<0.1	3.8	1.9	<1	<1	<0.1	3.65	1.66
00:15	0.1	<0.1	<0.1	3.8	1.9	<1	<1	<0.1		
00:30	0.1	<0.1	<0.1	3.8	1.9	<1	<1	<0.1		
00:45	0.1	<0.1	<0.1	3.8	1.9	<1	<1	<0.1		
01:00	0.1	<0.1	<0.1	3.8	1.9	<1	<1	<0.1		
01:15	0.1	<0.1	<0.1	3.8	1.9	<1	<1	<0.1		
01:30	0.1	<0.1	<0.1	3.8	1.9	<1	<1	<0.1		
01:45	0.1	<0.1	<0.1	3.8	1.9	<1	<1	<0.1		
02:00	0.1	<0.1	<0.1	3.8	1.9	<1	<1	<0.1		
02:15	0.1	<0.1	<0.1	3.8	1.9	<1	<1	<0.1		
02:30	0.1	<0.1	<0.1	3.8	1.9	<1	<1	<0.1		
02:45	0.1	<0.1	<0.1	3.8	1.9	<1	<1	<0.1		
03:00	0.1	<0.1	<0.1	3.8	1.9	<1	<1	<0.1		
03:15	0.1	<0.1	<0.1	3.8	1.9	<1	<1	<0.1		
03:30	0.1	<0.1	<0.1	3.8	1.9	<1	<1	<0.1		
03:45	0.1	<0.1	<0.1	3.8	1.9	<1	<1	<0.1		
04:00	0.1	<0.1	<0.1	3.8	1.9	<1	<1	<0.1		
04:15										
04:30										
04:45										
05:00										
Steady	0.1	<0.1	<0.1	3.8	1.9	<1	<1	<0.1	3.65	1.66
Peak	0.1	0.0	0.0	3.8	1.9	0.0	0.0	0.0	3.65	1.66
Date 21.11.2022	Engine	Not er	tes: LAB		Baro		Pressure ure Tren			82 eady
	Equipm	ont	GFM43	20	1					9
	Equipm	ieni	JOFIVI4:	οU	1	AII 16	emp (°C)	1	1	9

Project Number C4103 CP2 **Project Name** Pibwrlwyd Campus Client Gleeds **Detection Limit** <0.1 <0.1 <0.1 <0.1 <1 < 0.1 Depth of Groundwater (mbgl Volatile Organic Carbon (ppr Depth of Installation. (mbgl) Hydrogen Sulphide. (ppm) Carbon Monoxide. (ppm) Carbon Dioxide. (%vol) Gas Flow Rate. (I/hr) Methane. (%LEL) Methane. (%vol) Oxygen. (%vol) Time 1.5 <1 <0.1 4.00 00:00 0.1 < 0.1 < 0.1 14.6 <1 3.90 0.1 < 0.1 < 0.1 < 0.1 00:15 14.6 1.5 <1 <1 00:30 0.1 < 0.1 < 0.1 14.6 1.5 <1 <1 < 0.1 00:45 0.1 < 0.1 < 0.1 14.6 1.5 <1 <1 < 0.1 01:00 <0.1 < 0.1 14.6 1.5 <1 < 0.1 0.1 <1 01:15 < 0.1 < 0.1 14.6 1.5 <1 <1 < 0.1 0.1 01:30 < 0.1 0.1 < 0.1 < 0.1 14.6 1.5 <1 <1 01:45 <0.1 < 0.1 14.6 1.5 < 0.1 0.1 <1 <1 02:00 0.1 < 0.1 < 0.1 14.6 1.5 <1 <1 < 0.1 02:15 0.1 < 0.1 < 0.1 14.6 1.5 <1 < 0.1 <1 02:30 0.1 <0.1 < 0.1 14.6 1.5 <1 <1 < 0.1 02:45 0.1 < 0.1 < 0.1 14.6 1.5 <1 < 0.1 <1 <0.1 03:00 < 0.1 < 0.1 14.6 0.1 1.5 <1 <1 03:15 0.1 < 0.1 < 0.1 14.6 1.5 <1 <1 < 0.1 03:30 < 0.1 14.6 < 0.1 0.1 < 0.1 1.5 <1 <1 03:45 < 0.1 0.1 < 0.1 14.6 1.5 <1 <1 < 0.1 04:00 0.1 <0.1 < 0.1 14.6 1.5 <1 <1 < 0.1 04:15 04:30 04:45 05:00 Steady <0.1 4.00 0.1 < 0.1 14.6 1.5 <0.1 3.90 <1 <1 Peak 0.1 0.0 0.0 14.6 1.5 0.0 0.0 0.0 4.00 3.90

Date	Not	es:		1008
08/12/2022	Engineer	LAB	Barometric Pressure, mbar	1008
			Pressure Trend	Steady
	Equipment	GFM430	Air Temp (°C)	9

Project Number C4103

Project Name Client	Pibwrlw Gleeds	yd Camp	us						WS	509
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppr	Depth of Installation. (mbgl)	Depth of Groundwater (mbg
00:00	0.1	<0.1	<0.1	14.9	2.3	<1	<1	<0.1	4.00	3.90
00:15	0.1	<0.1	<0.1	14.9	2.3	<1	<1	<0.1		
00:30	0.1	<0.1	<0.1	14.9	2.3	<1	<1	<0.1		
00:45	0.1	<0.1	<0.1	14.9	2.3	<1	<1	<0.1		
01:00	0.1	<0.1	<0.1	14.9	2.3	<1	<1	<0.1		
01:15	0.1	<0.1	<0.1	14.9	2.3	<1	<1	<0.1		
01:30	0.1	<0.1	<0.1	14.9	2.3	<1	<1	<0.1		
01:45	0.1	<0.1	<0.1	14.9	2.3	<1	<1	<0.1		
02:00	0.1	<0.1	<0.1	14.9	2.3	<1	<1	<0.1		
02:15	0.1	<0.1	<0.1	14.9	2.3	<1	<1	<0.1		
02:30	0.1	<0.1	<0.1	14.9	2.3	<1	<1	<0.1		
02:45	0.1	<0.1	<0.1	14.9	2.3	<1	<1	<0.1		
03:00	0.1	<0.1	<0.1	14.9	2.3	<1	<1	<0.1		
03:15	0.1	<0.1	<0.1	14.9	2.3	<1	<1	<0.1		
03:30	0.1	<0.1	<0.1	14.9	2.3	<1	<1	<0.1		
03:45	0.1	<0.1	<0.1	14.9	2.3	<1	<1	<0.1		
04:00	0.1	<0.1	<0.1	14.9	2.3	<1	<1	<0.1		
04:15										
04:30										
04:45										
05:00										
Steady	0.1	<0.1	<0.1	14.9	2.3	<1	<1	<0.1	4.00	3.90
Peak	0.1	0.0	0.0	14.9	2.3	0.0	0.0	0.0	4.00	3.90
Date 08/12/2022	Engine	Not er	es: LAB		Bard		Pressui ure Tre	re, mbar	1008 Steady	
	Equipn	nent	GFM43	30			emp (°0		1	9

Project Number C4103

Project Name Pibwrlwyd Campus

WS12

Client	Gleeds	vyu Carri	Jus						VV) 1 Z
				De	tection	Limit				
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppr	Depth of Installation. (mbgl)	Depth of Groundwater (mbք
00:00	0.1	<0.1	<0.1	16.5	1.6	<1	<1	<0.1	3.65	3.10
00:15	0.1	<0.1	<0.1	7.8	2.6	<1	<1	<0.1		
00:30	0.1	<0.1	<0.1	3.9	2.6	<1	<1	<0.1		
00:45	0.1	<0.1	<0.1	2.3	2.6	<1	<1	<0.1		
01:00	0.1	<0.1	<0.1	1.8	2.7	<1	<1	<0.1		
01:15	0.1	<0.1	<0.1	1.8	2.7	<1	<1	<0.1		
01:30	0.1	<0.1	<0.1	1.8	2.8	<1	<1	<0.1		
01:45	0.1	<0.1	<0.1	1.8	2.8	<1	<1	<0.1		
02:00	0.1	<0.1	<0.1	1.7	2.8	<1	<1	<0.1		
02:15	0.1	<0.1	<0.1	1.7	2.8	<1	<1	<0.1		
02:30	0.1	<0.1	<0.1	1.7	2.8	<1	<1	<0.1		
02:45	0.1	<0.1	<0.1	1.7	2.8	<1	<1	<0.1		
03:00	0.1	<0.1	<0.1	1.7	2.8	<1	<1	<0.1		
03:15	0.1	<0.1	<0.1	1.7	2.8	<1	<1	<0.1		
03:30	0.1	<0.1	<0.1	1.7	2.8	<1	<1	<0.1		
03:45	0.1	<0.1	<0.1	1.7	2.8	<1	<1	<0.1		
04:00	0.1	<0.1	<0.1	1.7	2.8	<1	<1	<0.1		
04:15										
04:30										
04:45										
05:00										
Steady	0.1	<0.1	<0.1	1.7	2.8	<1	<1	<0.1	3.65	3.10
Peak	0.1	0.0	0.0	16.5	2.8	0.0	0.0	0.0	3.65	3.10
Date 08/12/2022	Engin		tes:		Barometric Pressure, mbar				10	800
						Press	ure Trei	nd	Ste	ady
	Equip	ment	GFM43	30		Air T	emp (°C	C)		9

Project Number Project Name Client	C4103 Pibwrlwy Gleeds	/d Camp	ous						Cl	P2
		<0.1	<0.1	<0.1						
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppn	Depth of Installation. (mbgl)	Depth of Groundwater (mbgl
00:00	0.1	<0.1	<0.1	13.4	0.5	<1	<1	<0.1	4.00	3.90
00:15	0.1	<0.1	<0.1	13.4	0.5	<1	<1	<0.1		
00:30	0.1	<0.1	<0.1	13.4	0.5	<1	<1	<0.1		
00:45	0.1	<0.1	<0.1	13.4	0.5	<1	<1	<0.1		
01:00	0.1	<0.1	<0.1	13.4	0.5	<1	<1	<0.1		
01:15	0.1	<0.1	<0.1	13.4	0.5	<1	<1	<0.1		
01:30	0.1	<0.1	<0.1	13.4	0.5	<1	<1	<0.1		
01:45	0.1	<0.1	<0.1	13.4	0.5	<1	<1	<0.1		
02:00	0.1	<0.1	<0.1	13.4	0.5	<1	<1	<0.1		
02:15	0.1	<0.1	<0.1	13.4	0.5	<1	<1	<0.1		
02:30	0.1	<0.1	<0.1	13.4	0.5	<1	<1	<0.1		
02:45	0.1	<0.1	<0.1	13.4	0.5	<1	<1	<0.1		
03:00	0.1	<0.1	<0.1	13.4	0.5	<1	<1	<0.1		
03:15	0.1	<0.1	<0.1	13.4	0.5	<1	<1	<0.1		
03:30	0.1	<0.1	<0.1	13.4	0.5	<1	<1	<0.1		
03:45	0.1	\0.1	<0.1	13.4	0.5	<1	<1	<0.1		
04:00	0.1	<0.1	<0.1	13.4	0.5	<1	<1	<0.1		
04:15	-	1							-	
04:30	 									
04:45 05:00		1							-	
Steady	0.1	<0.1	<0.1	13.4	0.5	<1	<1	<0.1	4.00	3.90
Peak	0.1	0.0	0.0	13.4	0.5	0.0	0.0	0.0	4.00	3.90
Date 12/01/2023	Engine	Not	es: LAB	•	Barometric Pressure, mbar					98
						Pressu	ıre Tren	d	Rising	
	Equipm	ent	GFM43	30		Air Te	emp (°C)		1	L1

11

Air Temp (°C)

Gas Monitoring Certificate

Equipment

GFM430

Gas Mor	nitoring	Certi	ficate						cons	sultir	
Project Number Project Name Client	C4103 Pibwrlwy Gleeds	/d Camp	ous						W:	S09	
				Det	ection I	Limit					
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1			
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppr	Depth of Installation. (mbgl)	Depth of Groundwater (mbg	
00:00	0.1	<0.1	<0.1	15.9	2.6	<1	<1	<0.1	4.00	3.85	
00:15	0.1	<0.1	<0.1	15.9	2.6	<1	<1	<0.1			
00:30	0.1	<0.1	<0.1	15.9	2.6	<1	<1	<0.1			
00:45	0.1	<0.1	<0.1	15.9	2.6	<1	<1	<0.1			
01:00	0.1	<0.1	<0.1	15.9	2.6	<1	<1	<0.1			
01:15	0.1	<0.1	<0.1	15.9	2.6	<1	<1	<0.1			
01:30	0.1	<0.1	<0.1	15.9	2.6	<1	<1	<0.1			
01:45	0.1	<0.1	<0.1	15.9	2.6	<1	<1	<0.1			
02:00	0.1	<0.1	<0.1	15.9	2.6	<1	<1	<0.1			
02:15	0.1	<0.1	<0.1	15.9	2.6	<1	<1	<0.1			
02:30	0.1	<0.1	<0.1	15.9	2.6	<1	<1	<0.1			
02:45	0.1	<0.1	<0.1	15.9	2.6	<1	<1	<0.1			
03:00	0.1	<0.1	<0.1	15.9	2.6	<1	<1	<0.1			
03:15	0.1	<0.1	<0.1	15.9	2.6	<1	<1	<0.1			
03:30	0.1	<0.1	<0.1	15.9	2.6	<1	<1	<0.1	1		
03:45	0.1	<0.1	<0.1	15.9	2.6	<1	<1	<0.1			
04:00	0.1	<0.1	<0.1	15.9	2.6	<1	<1	<0.1			
04:15	<u> </u>										
04:30									1		
04:45									1		
05:00											
Steady	0.1	<0.1	<0.1	15.9	2.6	<1	<1	<0.1	4.00	3.85	
Peak	0.1	0.0	0.0	15.9	2.6	0.0	0.0	0.0	4.00	3.85	
Date 12/01/2023	Engine	Not er	tes: LAB		Baro		Pressure			98	
						Pressu	ire Tren	u	Ri	Rising	

Project Number C4103

Project Name Pibwrlwyd Campus

| WS12 |

Project Name Client		ibwrlwyd Campus ileeds									512
		Detection Limit									
			<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
Time		Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppr	Depth of Installation. (mbgl)	Depth of Groundwater (mbg
00:00	0).1	<0.1	<0.1	16.4	1.2	<1	<1	<0.1	3.65	3.20
00:15	0	0.1	<0.1	<0.1	12.1	1.4	<1	<1	<0.1		
00:30	0).1	<0.1	<0.1	7.6	1.5	<1	<1	<0.1		
00:45	0).1	<0.1	<0.1	4.8	1.5	<1	<1	<0.1		
01:00	0).1	<0.1	<0.1	4.6	1.5	<1	<1	<0.1		
01:15	0).1	<0.1	<0.1	4.6	1.5	<1	<1	<0.1		
01:30	0).1	<0.1	<0.1	4.6	1.5	<1	<1	<0.1		
01:45	0).1	<0.1	<0.1	4.6	1.5	<1	<1	<0.1		
02:00	0	0.1	<0.1	<0.1	4.6	1.5	<1	<1	<0.1		
02:15	0).1	<0.1	<0.1	4.6	1.5	<1	<1	<0.1		
02:30	0).1	<0.1	<0.1	4.6	1.5	<1	<1	<0.1		
02:45	0	0.1	<0.1	<0.1	4.6	1.5	<1	<1	<0.1		
03:00	0	0.1	<0.1	<0.1	4.6	1.5	<1	<1	<0.1		
03:15	0	0.1	<0.1	<0.1	4.6	1.5	<1	<1	<0.1		
03:30	0).1	<0.1	<0.1	4.6	1.5	<1	<1	<0.1		
03:45	0	0.1	<0.1	<0.1	4.6	1.5	<1	<1	<0.1		
04:00	0	0.1	<0.1	<0.1	4.6	1.5	<1	<1	<0.1		
04:15											
04:30											
04:45											
05:00											
Steady	0	.1	<0.1	<0.1	4.6	1.5	<1	<1	<0.1	3.65	3.20
Peak	0	.1	0.0	0.0	16.4	1.5	0.0	0.0	0.0	3.65	3.20
Date 12/01/2023	En	ginee	Not	es: LAB		Barometric Pressure, mba			e, mbar	998	
							Pressu	re Tren	d	rising	
	Eq	uipm	ent	GFM43	30		Air Te	mp (°C)		11	

Project Name	C4103 Pibwrlwy Gleeds	d Camp								P2	
				Det	ection l	imit					
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1			
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppn	Depth of Installation. (mbgl)	Depth of Groundwater (mbgl	
00:00	0.1	<0.1	<0.1	16.3	1.2	<1	<1	<0.1	4.00	3.90	
00:15	0.1	<0.1	<0.1	14.9	1.2	<1	<1	<0.1			
00:30	0.1	<0.1	<0.1	14.9	1.2	<1	<1	<0.1			
00:45	0.1										
01:00	0.1	<0.1	<0.1	14.9	1.2	<1	<1	<0.1			
01:15	0.1	<0.1	<0.1	14.9	1.2	<1	<1	<0.1			
01:30	0.1	<0.1	<0.1	14.9	1.2	<1	<1	<0.1			
01:45	0.1	<0.1	<0.1	14.9	1.2	<1	<1	<0.1			
02:00	0.1	<0.1	<0.1	14.9	1.2	<1	<1	<0.1			
02:15	0.1	<0.1	<0.1	14.9	1.2	<1	<1	<0.1			
02:30	0.1	<0.1	<0.1	14.9	1.2	<1	<1	<0.1			
02:45	0.1	<0.1	<0.1	14.9	1.2	<1	<1	<0.1			
03:00	0.1	<0.1	<0.1	14.9	1.2	<1	<1	<0.1			
03:15	0.1	<0.1	<0.1	14.9	1.2	<1	<1	<0.1			
03:30	0.1	<0.1	<0.1	14.9	1.2	<1	<1	<0.1			
03:45	0.1	<0.1	<0.1	14.9	1.2	<1	<1	<0.1			
04:00	0.1	<0.1	<0.1	14.9	1.2	<1	<1	<0.1			
04:15											
04:30											
04:45											
05:00											
Steady	0.1	<0.1	<0.1	14.9	1.2	<1	<1	<0.1	4.00	3.90	
Peak	0.1	0.1 0.0 0.0 16.3				0.0	0.0	0.0	4.00	3.90	
Date 02/02/2023	Notes: Engineer LAI		es: LAB		Barometric Pressure, mbar				1024		
		-				Pressure Trend				Steady	
	Equipment GFM430					Air Te	mp (°C)		1	12	

Project Number C4103

Pihwrlwyd Campus

Project Name Client		Pibwrlwy Gleeds	/d Camp	us		WS	509					
					Det	ection l	imit					
			<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1			
Time		Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppr	Depth of Installation. (mbgl)	Depth of Groundwater (mbgl	
00:00		0.1	<0.1	<0.1	16.6	1.8	<1	<1	<0.1	4.00	3.80	
00:15		0.1	<0.1	<0.1	16.6	1.8	<1	<1	<0.1			
00:30		0.1	<0.1	<0.1	16.6	1.8	<1	<1	<0.1			
00:45		0.1	<0.1	<0.1	16.6	1.8	<1	<1	<0.1			
01:00		0.1	<0.1	<0.1	16.6	1.8	<1	<1	<0.1			
01:15		0.1	<0.1	<0.1	16.6	1.8	<1	<1	<0.1			
01:30		0.1	<0.1	<0.1	16.6	1.8	<1	<1	<0.1			
01:45		0.1	<0.1	<0.1	16.6	1.8	<1	<1	<0.1			
02:00		0.1	<0.1	<0.1	16.6	1.8	<1	<1	<0.1			
02:15		0.1	<0.1	<0.1	16.6	1.8	<1	<1	<0.1			
02:30	_	0.1	<0.1	<0.1	16.6	1.8	<1	<1	<0.1			
02:45	_	0.1	<0.1	<0.1	16.6	1.8	<1	<1	<0.1			
03:00	_	0.1	<0.1	<0.1	16.6	1.8	<1	<1	<0.1			
03:15		0.1	<0.1	<0.1	16.6	1.8	<1	<1	<0.1			
03:30	_	0.1	<0.1	<0.1	16.6	1.8	<1	<1	<0.1			
03:45	_	0.1	<0.1	<0.1	16.6	1.8	<1	<1	<0.1	-		
04:00	_	0.1	<0.1	<0.1	16.6	1.8	<1	<1	<0.1	-		
04:15	_											
04:30	_				ļ		ļ			-		
04:45	_	\sqcup										
05:00	_						_	_				
Steady	-	0.1				1.8	<1 0.0	<1	<0.1	4.00	3.80	
Peak		0.1	0.1 0.0		16.6	1.8	0.0	0.0	0.0	4.00	3.80	
Date 02/02/2023				lotes:		Barometric Pressure, mbar						
						Pressure Trend			Steady			
		Equipm	quipment G		30		Air Te	Air Temp (°C)			12	

Project Number C4103

Project Name Pibwrlwyd Campus

| WS12 |

Project Name Client		ribwriwy Gleeds	eeds							VVS	512
					Det	ection I	₋imit				
			<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
Time		Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppr	Depth of Installation. (mbgl)	Depth of Groundwater (mbg
00:00		0.1	<0.1	<0.1	17.9	1.5	<1	<1	<0.1	3.65	3.15
00:15		0.1	<0.1	<0.1	84	1.6	<1	<1	<0.1		
00:30		0.1	<0.1	<0.1	3.3	1.6	<1	<1	<0.1		
00:45		0.1	<0.1	<0.1	2.6	1.7	<1	<1	<0.1		
01:00		0.1	<0.1	<0.1	2.6	1.7	<1	<1	<0.1		
01:15		0.1	<0.1	<0.1	2.6	1.7	<1	<1	<0.1		
01:30		0.1	<0.1	<0.1	2.6	1.7	<1	<1	<0.1		
01:45		0.1	<0.1	<0.1	2.6	1.7	<1	<1	<0.1		
02:00		0.1	<0.1	<0.1	2.6	1.7	<1	<1	<0.1		
02:15		0.1	<0.1	<0.1	2.6	1.7	<1	<1	<0.1		
02:30		0.1	<0.1	<0.1	2.6	1.7	<1	<1	<0.1		
02:45		0.1	<0.1	<0.1	2.6	1.7	<1	<1	<0.1		
03:00		0.1	<0.1	<0.1	2.6	1.7	<1	<1	<0.1		
03:15		0.1	<0.1	<0.1	2.6	1.7	<1	<1	<0.1		
03:30		0.1	<0.1	<0.1	2.6	1.7	<1	<1	<0.1		
03:45	⊥	0.1	<0.1	<0.1	2.6	1.7	<1	<1	<0.1		
04:00		0.1	<0.1	<0.1	2.6	1.7	<1	<1	<0.1		
04:15											
04:30											
04:45											
05:00											
Steady		0.1	<0.1	<0.1	2.6	1.7	<1	<1	<0.1	3.65	3.15
Peak		0.1	0.0	0.0	17.9	1.7	0.0	0.0	0.0	3.65	3.15
Date 02/02/2023		Note Engineer I		tes:		Baro		Pressure)24
1						Pressure Trend					ady
		Equipm	Equipment G		30		Air Te	emp (°C)			L2

Project Number Project Name Client	C4103 Pibwrlwy Gleeds	/d Camp	us						C	P2
				Det	ection I	Limit				
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppn	Depth of Installation. (mbgl)	Depth of Groundwater (mbgl
00:00	0.1	<0.1	<0.1	16.7	1.1	<1	<1	<0.1	4.00	3.90
00:15	0.1	<0.1	<0.1	16.2	1.1	<1	<1	<0.1		
00:30	0.1	<0.1	<0.1	1.2	1.2	<1	<1	<0.1		
00:45	0.1	<0.1	<0.1	1.2	1.2	<1	<1	<0.1		
01:00	0.1	<0.1	<0.1	1.2	1.2	<1	<1	<0.1		
01:15	0.1	<0.1	<0.1	1.2	1.2	<1	<1	<0.1		
01:30	0.1	<0.1	<0.1	1.2	1.2	<1	<1	<0.1		
01:45	0.1	<0.1	<0.1	1.2	1.2	<1	<1	<0.1		
02:00	0.1	<0.1	<0.1	1.2	1.2	<1	<1	<0.1		
02:15	0.1	<0.1	<0.1	1.2	1.2	<1	<1	<0.1		
02:30	0.1	<0.1	<0.1	1.2	1.3	<1	<1	<0.1		
02:45	0.1	<0.1	<0.1	1.2	1.3	<1	<1	<0.1		
03:00	0.1	<0.1	<0.1	1.2	1.4	<1	<1	<0.1		
03:15	0.1	<0.1	<0.1	1.2	1.4	<1	<1	<0.1		
03:30	0.1	<0.1	<0.1	1.2	1.4	<1	<1	<0.1		
03:45	0.1	<0.1	<0.1	1.2	1.4	<1	<1	<0.1		
04:00	0.1	<0.1	<0.1	1.2	1.4	<1	<1	<0.1		
04:15		1							1	
04:30										
04:45									-	
05:00										2.22
Steady Peak	0.1	<0.1 0.0	<0.1 0.0	1.2 16.7	1.4	<1 0.0	<1 0.0	<0.1 0.0	4.00 4.00	3.90 3.90
	J.2					1	1 0.0	, J.J	7.00	3.30
Date 26/01/2023			Notes: LAB		Barometric Pressure, mbar					
				Pressure Trend			Falling			
	Equipm	Equipment GFM430				Air Te	emp (°C)		1	L 1

Project Number C4103

Project Name Client	Pibwrlwy Gleeds	/d Camp		WS	509					
				Det	ection l	imit				
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
rime	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppr	Depth of Installation. (mbgl)	Depth of Groundwater (mbgl
00:00	0.1	<0.1	<0.1	17.4	1.6	<1	<1	<0.1	4.00	3.80
00:15	0.1	<0.1	<0.1	17.1	1.6	<1	<1	<0.1		
00:30	0.1	<0.1	<0.1	16.9	1.7	<1	<1	<0.1		
00:45	0.1	<0.1	<0.1	16.9	1.8	<1	<1	<0.1		
01:00	0.1	<0.1	<0.1	16.9	1.8	<1	<1	<0.1		
01:15	0.1	<0.1	<0.1	16.9	1.9	<1	<1	<0.1		
01:30	0.1	<0.1	<0.1	16.9	1.9	<1	<1	<0.1		
01:45	0.1	<0.1	<0.1	16.9	1.9	<1	<1	<0.1		
02:00	0.1	<0.1	<0.1	16.9	1.9	<1	<1	<0.1		
02:15	0.1	<0.1	<0.1	16.9	1.9	<1	<1	<0.1		
02:30	0.1	<0.1	<0.1	16.9	1.9	<1	<1	<0.1		
02:45	0.1	<0.1	<0.1	16.9	1.9	<1	<1	<0.1		
03:00	0.1	<0.1	<0.1	16.9	1.9	<1	<1	<0.1		
03:15	0.1	<0.1	<0.1	16.9	1.9	<1	<1	<0.1		
03:30	0.1	<0.1	<0.1	16.9	1.9	<1	<1	<0.1		
03:45	0.1	<0.1	<0.1	16.9	1.9	<1	<1	<0.1		
04:00	0.1	<0.1	<0.1	16.9	1.9	<1	<1	<0.1		
04:15										
04:30										
04:45										
05:00										
Steady	0.1	<0.1	<0.1	16.9	1.9	<1	<1	<0.1	4.00	3.80
Peak	0.1	0.0 0.0 17.4			1.9	0.0	0.0	0.0	4.00	3.80
Date 26/01/2023	Engine	Not er	es: LAB		Baro		Pressure)32
				Pressure Trend			Falling			
	Equipm	Equipment GFM430			Air Te	emp (°C))] 1	l1	

Project Number C4103

Pihwrlwyd Campus

Project Name Client	Pibwrlwy Gleeds	d Camp	us		WS	512				
				Det	ection l	imit				
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppi	Depth of Installation. (mbgl)	Depth of Groundwater (mbg
00:00	0.1	<0.1	<0.1	18.2	1.4	<1	<1	<0.1	3.65	3.15
00:15	0.1	<0.1	<0.1	6.5	1.4	<1	<1	<0.1		
00:30	0.1	<0.1	<0.1	3.3	1.5	<1	<1	<0.1		
00:45	0.1	<0.1	<0.1	2.8	1.6	<1	<1	<0.1		
01:00	0.1	<0.1	<0.1	2.8	1.6	<1	<1	<0.1		
01:15	0.1	<0.1	<0.1	2.8	1.8	<1	<1	<0.1		
01:30	0.1	<0.1	<0.1	2.8	1.8	<1	<1	<0.1		
01:45	0.1	<0.1	<0.1	2.8	1.8	<1	<1	<0.1		
02:00	0.1	<0.1	<0.1	2.8	1.8	<1	<1	<0.1		
02:15	0.1	<0.1	<0.1	2.8	1.8	<1	<1	<0.1		
02:30	0.1	<0.1	<0.1	2.8	1.8	<1	<1	<0.1		
02:45	0.1	<0.1	<0.1	2.8	1.8	<1	<1	<0.1		
03:00	0.1	<0.1	<0.1	2.8	1.8	<1	<1	<0.1		
03:15	0.1	<0.1	<0.1	2.8	1.8	<1	<1	<0.1		
03:30	0.1	<0.1	<0.1	2.8	1.8	<1	<1	<0.1		
03:45	0.1	<0.1	<0.1	2.8	1.8	<1	<1	<0.1		
04:00	0.1	<0.1	<0.1	2.8	1.8	<1	<1	<0.1		
04:15										
04:30										
04:45										
05:00										
Steady	0.1	<0.1	<0.1	2.8	1.8	<1	<1	<0.1	3.65	3.15
Peak	0.1	0.1 0.0 0.0 18.2			1.8	0.0	0.0	0.0	3.65	3.15
Date 26/01/2023	Note		otes:		Baro		Pressure			
			Pressure Trend				Falling			
	Equipm	Equipment GFM430		30		Air Te	emp (°C))	11	

TEST DATE AND CONDITIONS Date 07/07/2022 Atmospheric Pressure 1011 mB Ambient Temperature 22.0 °C Environics Serial No. 5089

GFM430 Final Inspection & Calibration Check Certificate

Customer	HSP Consulting Engineers Ltd
Certificate Number	123328
Order Number	331479

Serial Number	10152
Software Version	G430-00.0024/0013

GAS DATA LTD

Unit 4, Fairfield Court

Seven Stars Estate

Wheler Rd

Coventry

CV3 4LJ

Tel 02476303311

GAS DATA

Fax 02476307711

Recalibration DUE Date
07/07/23

	Instrument Checks									
Keyboard		1	Display Contrast	✓						
Pump Flow In	450 Accept > 200 cc/n		Pump Flow @ -200mB	200	Accept > 200 cc/min					
Clock Set / Running		1	Labels Fitted	7.5	V					

			Gas Checks				
	CH ₄		CO ₂		02		
	Instrument Gas	True Gas	Instrument Gas	True Gas	Instrument Gas	True Gas	
Readings %		Value %	Readings %	Value %	Readings %	Value %	
Sensor	59.7	60	39.7	10	20.9	20.0	
	Accept ±3.0	60	Accept ±3.0	40	Accept ±0.5	20.9	
	5.0	5	5.0		6.0		
	Accept ±0.3	5	Accept ±0.3	5	Accept ±0.3	6	
Zero	0.0	0	0.0	0	0.0		
100% N2	ading 00% N2 Accept ±0.0	0	Accept ±0.0	0	Accept ±0.1	0	

	Optional Gas Checks											
Applied	l Gas & Range	Concentration Tested @		Instrument Readings (ppm)								
Toxic Gas Range (ppm)		(ppm)		Zero Reading	Instrument Gas Reading							
H2S	2000	1500	0	Accept ±0.0	1500	Accept ±5.0						
со	2000	1000	0	Accept ±0.0	1000	Accept ±5.0						

				Cross Ga	s Effects				
Applie	d Gas (ppm)				Instrument Re	eadings (ppm)		
Гохіс Gas	Concentration	Toxic 1:	H2S	Toxic 2:	со	Toxic 3:			
H2S	1500	150	0		0		10-11		
СО	1000	110	0	1	000	n & Calii	Supplies	Sar 1	156-71
				Pressure	e Checks				
	Atmos	spheri <mark>c</mark> Press	ure [AP] <i>(n</i>	nB)			Static Pressu	re [SP] <i>(m</i>	B)
Current	Atmospheric	Date Line	Instrumen	t Atmospheri	ic	Applied Pre	ecure (mR)		ent Pressure
Press	sure (mB)		Pressure l	Reading (mB)		Applied 116	assure (IIID)		(mB)
Al	l Ports	Open P	orts	1011	Accept ±2.0	0.0	mB	N/A	Accept ±0.0
AP Por	t (Internal)	+800	mB	800	Accept ±5.0	+50	mB	N/A	Accept ±2.0
AP Por	t (Internal)	+1200	mb	1200	Accept ±5.0	-100)mB	N/A	Accept ±2.0
				Flow (Checks				REITS N
	Bor	ehole Flow				Diffe	erential Press	ure	
Applied 1	Reading (I/h)	Instrum	ent Readii	ng (I/h)	Applied Pre	ssure (Pa)	Instru	ment Read	ling (Pa)
	-30	-30.1 Accept ±3.0		pt ±3.0	-27	70	-276	Acc	cept ±50
	-3	-3.0	Acce	ot ±1.0	-1	2	-12	Acc	ept ±6.0
Ulay Kere	0	0.0	Acce	ot ±0.0	C	0		Acc	ept ±0.5
	3	3.0	Acce	ot ±0.5	12		12	Acc	ept ±3.0
	30	29.9	Acce	ot ±3.0	27	5	273	Accept ±50	
	60	60.0	Acce	pt ±6.0	85	6	861	Acc	ept ±130
	90	90.7	Acce	pt ±9.0	16	98	1747	Acc	ept ±250
	1			Tempera	ture Checks				
			tion Temp		Instrument 7	Temperature	Reading ⁰ C		
		Applie	d Tempera	ture ⁰ C					
	9		-10		-10.0	Accep			
			0		0.0	Accep			
			30		30.0	Accep			
			60		60.0	Accep			
			100		100.0	Accep	t ±1.0		
	Te	chnician:		1			Date Tested:	SINE S	
118	SHAPE OF STREET	Rutland					7/07/202		

The instrument identified by the serial number stated above has been tested by Gas Data personnel for calibration accuracy on the date and under the ambient conditions stated. Gas Data Ltd internal BS EN ISO9001:2015, BS EN ISO14001:2015, BS EN ISO45001:2018 compliant workshop procedures were followed to apply known calibration test gases, gas flow rates, pressures and temperatures of the values stated.

The results displayed on the instrument at each stage are recorded above.

TEST D	ATE AND COND	ITIONS										
Date 7.7.22												
Atmospheric Pressure MB												
Ambient Tem	perature	22.0	°C									
Environics Se	erial No.	Smo	59									

GAS DATA LTD Unit 4 Fairfield Court Seven Stars Estate Coventry CV3 4LJ UK +44 (0)24 7630 3311

GFM	1430 -1 OUTWA	RD INSPECTION & QUALITY C	HECK	SHEET
		INSTRUMENT DETAILS		
SO Number	Instrument Type	Instrument Serial Number + SW Version		Job Number(s)
331479	954,430	10152 9470-24/13		123328
Calibration Tech		J. Caro	Date Date	₹.7.22

	INSTRUMENT	Pass (P), Fail (F) or	INSTRUMENT PACKING	Tick if
	CHECKS	not applicable (NA)	LIST	included
Function	Dust Caps Fitted	6	Instrument	~
Tests	Keyboard Test (All Keys)	l	Leather Case	
	Backlight	8	Instrument Strap	
	Clock Set / Running	la la	AC Battery Charger (UK)	1
	Comms Test	Y	AC Battery Charger (EURO)	×
	Pump Flow Test (In & Out)	P	AC Battery Charger (US)	\
	Overall Leak Test (30mB)	n/a	AC Battery Charger (AUS)	×
	Battery Charge Test	6	Hard Carry Case	
	Service Date set to?	7.7.23	Gas Sample Tube – (new issue)	
Channel	Data Logging Enabled?	P	Flow Sample Tube – (new issue)	
Test	Verify CH4/LEL	8	Spares Pot	X
	Verify CO2	P	Allen Key	x
	Verify O2	P	Temperature Probe	X
	Verify LEL	E	Vane Anemometer	X
	Verify 1st Option Gas		USB Cable	X
	Verify 2 nd Option Gas	P	USB Memory stick	X
	Verify 3 rd Option Gas	NA	SiteMan Software Ver 4.15	X X X
	Verify 4 th Option Gas	NLA	Internal Filter Pack Qty	*
	Verify Atmospheric pressure	f	External Filter Pack Qty	X
	Verify static pressure	NIA	Field Guide	X
	Verify differential pressure	l C	Operation Manual (hard copy)	X
	Verify flow		Extra Items:	,
	Verify temperature probe input	P	SAMPLE CUBES	
	Verify vane anemometer input	R		
DataBase	Jobcard(s) completed and signed	(Loas VALLOU	
Checks	Jobcard(s) booked off database	P	<u> </u>	
	Calibration certificate completed	P		
	Complete & print QI record	n/a	Comments:	
Label	No. of Calibration label fitted	GDC 11494		
Checks	Warranty label fitted	P		
H2S Range	H2S Range from Sales Order	Socoo ppm		
	H2S Range from Cal Cert	Zcoo ppm		
	Over-range value correct?	l e		

Appendix VIII

Waste Classification Report

HazWasteOnline[™] classifies waste as either **hazardous** or **non-hazardous** based on its chemical composition, related legislation and the rules and data defined in the current UK or EU technical guidance (Appendix C) (note that HP 9 Infectious is not assessed). It is the responsibility of the classifier named below to:

- a) understand the origin of the waste
- b) select the correct List of Waste code(s)
- c) confirm that the list of determinands, results and sampling plan are fit for purpose
- d) select and justify the chosen metal species (Appendix B)
- e) correctly apply moisture correction and other available corrections
- f) add the meta data for their user-defined substances (Appendix A)
- g) check that the classification engine is suitable with respect to the national destination of the waste (Appendix C)

To aid the reviewer, the laboratory results, assumptions and justifications managed by the classifier are highlighted in pale yellow.

OCD5H-ALU9H-O5C

Job name

HWOL_22-43062-20221206 161820[2]

Description/Comments

General suite of contaminants - proposed school redevelopment

Project Site

C4103 Coleg Sir Gar - Pibwrlwyd Campus

Classified by

Name: Company:

Matthew Kent HSP Consulting Engineers Limited

Date: Lawrence House
10 Feb 2023 14:39 GMT 6 Meadowbank Way

Telephone: **Eastwood 01773 535 555 NG16 3SB**

HazWasteOnline™ provides a two day, hazardous waste classification course that covers the use of the software and both basic and advanced waste classification techniques. Certification has to be renewed every 3 years.

HazWasteOnline™ Certification:

CERTIFIED Date

Hazardous Waste Classification

12 Feb 2020

Next 3 year Refresher due by Feb 2023

Purpose of classification

2 - Material Characterisation

Address of the waste

Coleg Sig Gar Post Code SA31 2NH

SIC for the process giving rise to the waste

41201 Construction of commercial buildings

Description of industry/producer giving rise to the waste

Redevelopment on site

Description of the specific process, sub-process and/or activity that created the waste

Excavation during redevelopment process

Description of the waste

Predominantly natural soils or variable consistency. Some limited Made Ground

Job summary

#	Sample name	Depth [m]	Classification Result	Hazard properties	Page
1	WS01-02/11/2022-0.40	0.40	Non Hazardous		3
2	WS02-02/11/2022-0.30	0.30	Non Hazardous		6
3	WS03-02/11/2022-0.40	0.40	Non Hazardous		9
4	WS04-02/11/2022-0.40	0.40	Non Hazardous		12
5	WS06-02/11/2022-0.40	0.40	Non Hazardous		15
6	WS07-02/11/2022-0.30	0.30	Non Hazardous		18
7	WS07-02/11/2022-0.90	0.90	Non Hazardous		21
8	WS09-02/11/2022-0.90	0.90	Non Hazardous		22
9	WS10-02/11/2022-0.10	0.10	Non Hazardous		23
10	WS10-02/11/2022-0.60	0.60	Non Hazardous		26
11	WS11-02/11/2022-0.20	0.20	Non Hazardous		29
12	WS11-02/11/2022-0.70	0.70	Non Hazardous		32
13	WS12-02/11/2022-0.40	0.40	Non Hazardous		35
14	WS12-02/11/2022-0.80	0.80	Non Hazardous		38

Related documents

# Name	Description
1 HWOL_22-43062-20221206 161820.hwol	Eurofins Chemtest .hwol file used to populate the Job
Example waste stream template for contaminated soils	waste stream template used to create this Job

Report

Created by: Matthew Kent Created date: 10 Feb 2023 14:39 GMT

Appendices	Page
Appendix A: Classifier defined and non GB MCL determinands	41
Appendix B: Rationale for selection of metal species	42
Appendix C: Version	43

Page 2 of 44 OCD5H-ALU9H-O5C0R www.hazwasteonline.com

17: Construction and Demolition Wastes (including excavated soil

Classification of sample: WS01-02/11/2022-0.40

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code: WS01-02/11/2022-0.40 Chapter: Sample Depth: 0.40 m

Entry:

17 05 04 (Soil and stones other than those mentioned in 17 05

03)

from contaminated sites)

Moisture content:

18%

(no correction)

Hazard properties

None identified

Determinands

Moisture content: 18% No Moisture Correction applied (MC)

					\top								
#		EU CLP index	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		number			\vdash							۲	
1	4	antimony { antimor		4000 04 4	_	<2	mg/kg	1.197	<2.394	mg/kg	<0.000239 %		<lod< th=""></lod<>
_		051-005-00-X	215-175-0	1309-64-4	+							-	
2	4	arsenic { arsenic tr		4007.50.0	_	3.5	mg/kg	1.32	4.621	mg/kg	0.000462 %		
		033-003-00-0	215-481-4	1327-53-3	+							\vdash	
3	4	boron { diboron tric		•	_	<0.4 m		3.22	<1.288	mg/kg	<0.000129 %		<lod< th=""></lod<>
_	-		215-125-8	1303-86-2	-								
4	4	cadmium { cadmiu			_	<0.1	mg/kg	1.142	<0.114	mg/kg	<0.0000114 %		<lod< th=""></lod<>
		048-002-00-0	215-146-2	1306-19-0									
5	4	chromium in chrom chromium(III) oxide	e (worst case) }			8.4	mg/kg	1.462	12.277	mg/kg	0.00123 %		
			215-160-9	1308-38-9									
6	4	chromium in chromoxide }	. , ,	,		<0.5	mg/kg	1.923	<0.962	mg/kg	<0.0000962 %		<lod< th=""></lod<>
		024-001-00-0	215-607-8	1333-82-0									
7	æ 🎉	copper { dicopper oxide; copper (I) oxide }			8.8	mg/kg	1.126	9.908	mg/kg	0.000991 %			
		029-002-00-X	215-270-7	1317-39-1									
8	4	lead {			1	4.8	mg/kg		4.8	mg/kg	0.00048 %		
		082-001-00-6											
9	4	mercury { inorganic exception of mercu elsewhere in this A	uric sulphide and t	•	1	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
		080-002-00-6			1								
	æ	nickel { nickel(II) ca	arbonate }										
10	•	028-010-00-0	222-068-2 [1] 240-408-8 [2] 265-748-4 [3] 235-715-9 [4]	3333-67-3 [1] 16337-84-1 [2] 65405-96-1 [3] 12607-70-4 [4]	_	7.2	mg/kg	2.022	14.561	mg/kg	0.00146 %		
11	4	selenium { nickel(II	l) selenite }			-0.2F	ma/k=	2 254	-0 E00	ma/k~	-0.0000E99.0/		<lod< th=""></lod<>
''		028-048-00-8	233-263-7	10101-96-9	1	<0.25	mg/kg	2.351	<0.588	mg/kg	<0.0000588 %		<lud< td=""></lud<>
	æ	zinc { zinc sulphate	e }										
12		030-006-00-9	231-793-3 [1] 231-793-3 [2]	7446-19-7 [1] 7733-02-0 [2]		18	mg/kg	2.469	44.447	mg/kg	0.00444 %		
13	0	TPH (C6 to C40) p	etroleum group	TPH		<10	mg/kg		<10	mg/kg	<0.001 %		<lod< th=""></lod<>

14 be 60 60 15 16 60 17 60 18 60 18 60 18 60 18 60 18 60	oluene 01-021-00-3 thylbenzene 01-023-00-4 ylene 01-022-00-9 yyanides { salts exception of completericyanides and magnetified elsewhere one-00-00-5	ex cyanides such a nercuric oxycyanid	as ferrocyanides,	CLP Note	<0.001 <0.001 <0.001 <0.002	mg/kg mg/kg mg/kg	Factor	<0.001 <0.001 <0.001 <0.002	mg/kg mg/kg mg/kg	<0.0000001 % <0.0000001 % <0.0000001 % <0.0000002 %	MC Applied	<lod <lod="" <lod<="" th=""></lod>
14 60 15 to 60 16 et 60 2 xy 60 17 17 est cycle 18 fer 50	on-o20-00-8 bluene on-o21-00-3 thylbenzene on-o23-00-4 ylene on-o22-00-9 yyanides { salts exception of completericyanides and management of the self-on-o0-5	203-625-9 202-849-4 202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4] of hydrogen cyanic ex cyanides such a nercuric oxycyanid	108-88-3 100-41-4 95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4] de with the as ferrocyanides,		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 % <0.0000001 %		<lod <lod< td=""></lod<></lod
15 to 60 16 et 60 17 xy 60 18 cy ex fe 50 18 cy ex fe 50 18 cy ex fe 50 10 cy ex fe 50	oluene 01-021-00-3 tthylbenzene 01-023-00-4 ylene 01-022-00-9 yyanides { salts salts	203-625-9 202-849-4 202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4] of hydrogen cyanic ex cyanides such a nercuric oxycyanid	108-88-3 100-41-4 95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4] de with the as ferrocyanides,		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
16 et 60 xy 60 60 17 18 fe 50 50 50 50 50 50 50 50 50 50 50 50 50	thylbenzene 01-023-00-4 ylene 01-022-00-9 yanides { salts exception of completericyanides and magnetified elsewhere 06-007-00-5	202-849-4 202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4] of hydrogen cyanides cyanides such a percuric oxycyanid	100-41-4 95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4] de with the last ferrocyanides,		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
16 60 xy 60 60 17 17 8 c c c c c c c c c c c c c c c c c c	ont-o23-00-4 ylene ont-o22-00-9 yanides { salts exception of complement compl	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4] of hydrogen cyanic ex cyanides such a nercuric oxycyanid	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4] de with the as ferrocyanides,									
17 ×y 60 18 cy ex fe sr 00	yanides (salts exception of complerricyanides and mpecified elsewhere 06-007-00-5	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4] of hydrogen cyanic ex cyanides such a nercuric oxycyanid	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4] de with the as ferrocyanides,		<0.002	mg/kg		<0.002	mg/kg	<0.0000002 %		<lod< td=""></lod<>
17 Cyex 18 fe sp	yanides { salts exception of complericyanides and magnetified elsewhere 106-007-00-5	203-396-5 [2] 203-576-3 [3] 215-535-7 [4] of hydrogen cyanic ex cyanides such a nercuric oxycyanid	106-42-3 [2] 108-38-3 [3] 1330-20-7 [4] de with the as ferrocyanides,		<0.002	mg/kg		<0.002	mg/kg	<0.0000002 %		<lod< td=""></lod<>
18 fe sr 00	erricyanides and m pecified elsewhere 06-007-00-5	ex cyanides such a nercuric oxycyanid	as ferrocyanides,									
- nl			exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }				1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
19 Pr	П			-								
			PH		8.1	pН		8.1	рН	8.1 pH		
20	aphthalene 01-052-00-2	202-049-5	91-20-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	cenaphthylene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %	П	<lod< td=""></lod<>
22 a ac	cenaphthene	205-917-1	208-96-8		-0.1			-0.1		40 00001 W	Н	4LOD
22		201-469-6	83-32-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
23 flu	uorene	201-695-5	86-73-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
24 ph	henanthrene	201-581-5	85-01-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
25 ar	nthracene		,		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
26 a flu	uoranthene	204-371-1	120-12-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
- D)	yrene	205-912-4	206-44-0									
21		204-927-3	129-00-0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
28	enzo[a]anthracene 01-033-00-9	e 200-280-6	56-55-3	+	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
791	hrysene 01-048-00-0	205-923-4	218-01-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
30 be	enzo[b]fluoranther	ne	,		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
60		205-911-9	205-99-2	-		J J			J. J			-
311 1	enzo[k]fluoranther 01-036-00-5	ne 205-916-6	207-08-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
32	enzo[a]pyrene; be	nzo[def]chrysene 200-028-5	50-32-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	ndeno[123-cd]pyre	ne	,		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
34 di	libenz[a,h]anthrace	205-893-2 ene	193-39-5		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
60		200-181-8	53-70-3		30.1	g/kg			mg/ng	13.00031 /0		
35 be	enzo[ghi]perylene	205-883-8	191-24-2	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
36 pe	anadium {	nadium pentaoxide	e; vanadium		6.7	mg/kg	1.785	11.961	mg/kg	0.0012 %		
-	23-001-00-8 nonohydric phenol	215-239-8 s	1314-62-1		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			P1186						Total:	0.0121 %	H	

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Classification of sample: WS02-02/11/2022-0.30

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

03)

Sample details

Sample name: LoW Code: WS02-02/11/2022-0.30 Chapter: Sample Depth: 0.30 m

Entry:

Moisture content:

3.8%

(no correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05

Hazard properties

None identified

Determinands

Moisture content: 3.8% No Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	«	antimony { antimor	ny trioxide }	1309-64-4		<2	mg/kg	1.197	<2.394	mg/kg	<0.000239 %		<lod< td=""></lod<>
2	ď	arsenic { arsenic tr		1327-53-3		3.5	mg/kg	1.32	4.621	mg/kg	0.000462 %		
3	ď	boron { diboron tric 005-008-00-8	oxide; boric oxide } 215-125-8	1303-86-2		<0.4	mg/kg	3.22	<1.288	mg/kg	<0.000129 %		<lod< td=""></lod<>
4	ď	cadmium { cadmiu 048-002-00-0	m oxide } 215-146-2	1306-19-0		0.16	mg/kg	1.142	0.183	mg/kg	0.0000183 %		
5	æ	chromium in chrom		ds { • 1308-38-9		2.9	mg/kg	1.462	4.239	mg/kg	0.000424 %		
6	æ	chromium in chromoxide }		1		<0.5	mg/kg	1.923	<0.962	mg/kg	<0.0000962 %		<lod< td=""></lod<>
7	æ	copper { dicopper of the dicop		kide } 1317-39-1		5.4	mg/kg	1.126	6.08	mg/kg	0.000608 %		
8	4	load (load colli	lead { • lead compounds with the exception of those specified elsewhere in this Annex (worst case) }			8.7	mg/kg		8.7	mg/kg	0.00087 %		
9	æ	mercury { inorganicexception of mercuelsewhere in this A	uric sulphide and th		1	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
	4	nickel { nickel(II) ca	a <mark>rbonate</mark> }										
10		028-010-00-0	222-068-2 [1] 240-408-8 [2] 265-748-4 [3] 235-715-9 [4]	3333-67-3 [1] 16337-84-1 [2] 65405-96-1 [3] 12607-70-4 [4]		3.5	mg/kg	2.022	7.078	mg/kg	0.000708 %		
11	4	selenium { nickel(II	1) selenite } 233-263-7	10101-96-9		<0.25	mg/kg	2.351	<0.588	mg/kg	<0.0000588 %		<lod< td=""></lod<>
		zinc { zinc sulphate		1	t								
12		030-006-00-9	231-793-3 [1] 231-793-3 [2]	7446-19-7 [1] 7733-02-0 [2]		8.7	mg/kg	2.469	21.483	mg/kg	0.00215 %		
13	0	TPH (C6 to C40) p	etroleum group	TPH		<10	mg/kg		<10	mg/kg	<0.001 %		<lod< td=""></lod<>

=		T			_		_				T	т -	
#			Determinand		CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLF							MC	
14		benzene				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< th=""></lod<>
Ľ		601-020-00-8	200-753-7	71-43-2		10.001					40.0000001 70		
15		toluene				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< th=""></lod<>
		601-021-00-3	203-625-9	108-88-3		10.001			40.001		40.0000001 70		1202
16	0	ethylbenzene				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		601-023-00-4	202-849-4	100-41-4		40.001	mg/kg		Z0.001		<0.0000001 70		LOD
17		xylene 601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.002	mg/kg		<0.002	mg/kg	<0.0000002 %		<lod< th=""></lod<>
18	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }					<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< th=""></lod<>
		pH			+								
19	0	P. 1		PH	-	9.2	pН		9.2	рН	9.2 pH		
20		naphthalene 601-052-00-2	202-049-5	91-20-3		0.19	mg/kg		0.19	mg/kg	0.000019 %		
		acenaphthylene	F02 0.00	0.200	+					-			
21		doonaphanyione	205-917-1	208-96-8	-	0.11	mg/kg		0.11	mg/kg	0.000011 %		
22	0	acenaphthene	201-469-6	83-32-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		fluorene			t								
23			201-695-5	86-73-7	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
0.4	0	phenanthrene				0.40			0.40		0.000040.0/		
24			201-581-5	85-01-8	-	0.16	mg/kg		0.16	mg/kg	0.000016 %		
0.5	0	anthracene	,			0.4			0.4		0.00004.0/		
25			204-371-1	120-12-7	1	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
26	0	fluoranthene	1			0.44			0.44	//	0.000044.0/		
20			205-912-4	206-44-0	1	0.41	mg/kg		0.41	mg/kg	0.000041 %		
27	0	pyrene				0.34	ma/ka		0.34	ma/ka	0.000034 %		
21			204-927-3	129-00-0	1	0.34	mg/kg		0.34	mg/kg	0.000034 %		
28		benzo[a]anthracen	e		İ	0.21	ma/ka		0.21	ma/ka	0.000021 %		
20		601-033-00-9	200-280-6	56-55-3	1	0.21	mg/kg		0.21	mg/kg	0.000021 76		
29		chrysene				0.21	ma/ka		0.21	mg/kg	0.000021 %		
29		601-048-00-0	205-923-4	218-01-9	1	0.21	mg/kg		0.21	mg/kg	0.000021 /6		
30		benzo[b]fluoranthe	ne			0.23	mg/kg		0.23	mg/kg	0.000023 %		
00		601-034-00-4	205-911-9	205-99-2		0.20			0.20		0.000020 70		
31		benzo[k]fluoranthe	ne			<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
Ĺ			205-916-6	207-08-9									
32		benzo[a]pyrene; be				0.28	mg/kg		0.28	mg/kg	0.000028 %		
Ĺ		601-032-00-3	200-028-5	50-32-8	\perp		J9			J			
33	0	indeno[123-cd]pyre				0.2	mg/kg		0.2	mg/kg	0.00002 %		
			205-893-2	193-39-5	1				-	<i>y y</i>			
34		dibenz[a,h]anthrac				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		601-041-00-2	200-181-8	53-70-3	╄								
35	0	benzo[ghi]perylene		,		0.18	mg/kg		0.18	mg/kg	0.000018 %		
			205-883-8	191-24-2	1								
36	vanadium { divanadium pentaoxide; vanadium pentoxide }				2.8	mg/kg	1.785	4.999	mg/kg	0.0005 %			
_		023-001-00-8	215-239-8	1314-62-1	\vdash								
37	0	monohydric pheno	ls	P1186		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
										Total:	0.00767 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)
 Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Page 8 of 44 OCD5H-ALU9H-O5C0R www.hazwasteonline.com

17: Construction and Demolition Wastes (including excavated soil

Classification of sample: WS03-02/11/2022-0.40

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code: WS03-02/11/2022-0.40 Chapter: Sample Depth: 0.40 m Entry:

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

from contaminated sites)

14%

(no correction)

Moisture content:

Hazard properties

None identified

Determinands

Moisture content: 14% No Moisture Correction applied (MC)

												Т	
#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
	2	antimony { antimor	ny trioxide }					4 407	0.004		0.000000.00		
1	~	051-005-00-X	215-175-0	1309-64-4	1	<2	mg/kg	1.197	<2.394	mg/kg	<0.000239 %		<lod< th=""></lod<>
2	æ	arsenic { arsenic tr	ioxide }			8.1		1.32	10.695		0.00107 %		
-		033-003-00-0	215-481-4	1327-53-3	1	0.1	mg/kg	1.32	10.695	mg/kg	0.00107 %		
3	æ	boron { diboron tric	oxide; boric oxide	+		<0.4	mg/kg	3.22	<1.288	mg/kg	<0.000129 %		<lod< th=""></lod<>
٥		005-008-00-8	215-125-8	1303-86-2		<0.4	mg/kg	3.22	<1.200	mg/kg	<0.000129 /6		\LOD
4	æ	cadmium { cadmiu	<mark>m oxide</mark> }			<0.1	mg/kg	1.142	<0.114	mg/kg	<0.0000114 %		<lod< th=""></lod<>
_	Ŭ	048-002-00-0	215-146-2	1306-19-0		VO.1		1.142	V0.114		<0.0000114 /0		LOD
5	4	chromium in chrom chromium(III) oxide	e (worst case) }			17	mg/kg	1.462	24.846	mg/kg	0.00248 %		
	-		215-160-9	1308-38-9	-								
6	4	chromium in chromoxide }	. , .	, , ,		<0.5	mg/kg	1.923	<0.962	mg/kg	<0.0000962 %		<lod< th=""></lod<>
	\vdash	024-001-00-0	215-607-8	1333-82-0	-								
7	4	copper { dicopper o				16	mg/kg	1.126	18.014	mg/kg	0.0018 %		
	1	029-002-00-X	215-270-7	1317-39-1	-	<u>, </u>							
8	4	lead {			1	10	mg/kg		10	mg/kg	0.001 %		
		082-001-00-6											
9	4	mercury { inorganic exception of mercu elsewhere in this A	ric sulphide and t	,	1	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
		080-002-00-6		1	1								
	2	nickel { nickel(II) ca	arbonate }										
10		028-010-00-0	222-068-2 [1] 240-408-8 [2] 265-748-4 [3] 235-715-9 [4]	3333-67-3 [1] 16337-84-1 [2] 65405-96-1 [3] 12607-70-4 [4]		16	mg/kg	2.022	32.359	mg/kg	0.00324 %		
11	æ	selenium { nickel(II) selenite }			0.30	ma/k=	2 254	0.017	ma/k~	0.0000017.0/		
''		028-048-00-8	233-263-7	10101-96-9	1	0.39	mg/kg	2.351	0.917	mg/kg	0.0000917 %		
	æ	zinc { zinc sulphate	}										
12		030-006-00-9	231-793-3 [1] 231-793-3 [2]	7446-19-7 [1] 7733-02-0 [2]		36	mg/kg	2.469	88.895	mg/kg	0.00889 %		
13	0	TPH (C6 to C40) p	etroleum group	TPH		<10	mg/kg		<10	mg/kg	<0.001 %		<lod< th=""></lod<>

#			Determinand		Note	User entere	d data	Conv.	Compound	conc.	Classification	MC Applied	Conc. Not
		EU CLP index number	EC Number	CAS Number	CLP			Factor			value	MC A	Used
14		benzene 601-020-00-8	200-753-7	71-43-2		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
45		toluene	200-733-7	11-43-2		0.004			0.004		0.000004.0/		1.00
15		601-021-00-3	203-625-9	108-88-3		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
16	0	ethylbenzene				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
			202-849-4	100-41-4									
17			202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.002	mg/kg		<0.002	mg/kg	<0.0000002 %		<lod< td=""></lod<>
18	4	cyanides { salts exception of completerricyanides and no specified elsewhere	ex cyanides such a nercuric oxycyanid	as ferrocyanides,		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
	_	006-007-00-5 pH										Н	
19	0	h		PH		8.1	рН		8.1	рН	8.1 pH		
20		naphthalene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			202-049-5	91-20-3									_
21	Θ	acenaphthylene	205-917-1	208-96-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
22	0	acenaphthene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			201-469-6	83-32-9	-								
23	Θ	fluorene	201-695-5	86-73-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
24	0	phenanthrene	201-581-5	85-01-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
25	Θ	anthracene		400.40.		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	0	fluoranthene	204-371-1	120-12-7								Н	
26			205-912-4	206-44-0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
27	0	pyrene	204-927-3	129-00-0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
28		benzo[a]anthracen				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			200-280-6	56-55-3									
29		chrysene 601-048-00-0	205-923-4	218-01-9	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
30		benzo[b]fluoranthe		1		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			205-911-9	205-99-2					40.1	mg/kg	13.00001 /0		`
31		benzo[k]fluoranthe	ne 205-916-6	207-08-9	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
32		benzo[a]pyrene; be	enzo[def]chrysene			<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
\vdash	$\overline{}$		200-028-5	50-32-8	-		- 3 3						
33	Θ	indeno[123-cd]pyre	ene 205-893-2	193-39-5		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
34		dibenz[a,h]anthrac	ene	,		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			200-181-8	53-70-3			J. J						
35	Θ	benzo[ghi]perylene	205-883-8	191-24-2	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
36	4	vanadium { • divapentoxide }		<u> </u>		12	mg/kg	1.785	21.422	mg/kg	0.00214 %		
37	0	monohydric pheno		P1186	+	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			1	1100						Total:	0.0225 %		1

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Classification of sample: WS04-02/11/2022-0.40

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code: WS04-02/11/2022-0.40 Chapter: Sample Depth: Entry: Moisture content: 18%

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)17 05 04 (Soil and stones other than those mentioned in 17 05

03)

Hazard properties

None identified

(no correction)

Determinands

Moisture content: 18% No Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	-	antimony { antimon 051-005-00-X	ny trioxide } 215-175-0	1309-64-4		<2	mg/kg	1.197	<2.394	mg/kg	<0.000239 %		<lod< th=""></lod<>
2	4	arsenic { arsenic tri	ioxide } 215-481-4	1327-53-3		4.7	mg/kg	1.32	6.206	mg/kg	0.000621 %		
3	-	boron { diboron tric 005-008-00-8	oxide; boric oxide } 215-125-8	1303-86-2		0.46	mg/kg	3.22	1.481	mg/kg	0.000148 %		
4	4	cadmium { <mark>cadmiu</mark> 048-002-00-0	<mark>m oxide</mark> } 215-146-2	1306-19-0		0.1	mg/kg	1.142	0.114	mg/kg	0.0000114 %		
5	4	chromium in chrom		ds { • 1308-38-9		9.2	mg/kg	1.462	13.446	mg/kg	0.00134 %		
6	4	chromium in chromoxide }	nium(VI) compound	ds { chromium(VI)		<0.5	mg/kg	1.923	<0.962	mg/kg	<0.0000962 %		<lod< td=""></lod<>
7	4	copper { dicopper o	215-607-8 oxide; copper (I) ox 215-270-7	1333-82-0 kide } 1317-39-1		7.1	mg/kg	1.126	7.994	mg/kg	0.000799 %		
8	4	lead {	oounds with the ex	ception of those	1	15	mg/kg		15	mg/kg	0.0015 %		
9	4	082-001-00-6 mercury { inorganic exception of mercuelsewhere in this A	ric sulphide and th		1	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
10	4		222-068-2 [1] 240-408-8 [2] 265-748-4 [3]	3333-67-3 [1] 16337-84-1 [2] 65405-96-1 [3]	-	6.8	mg/kg	2.022	13.752	mg/kg	0.00138 %		
11		selenium { nickel(II	,	12607-70-4 [4]		0.34	mg/kg	2.351	0.799	mg/kg	0.0000799 %		
12	4	zinc { zinc sulphate	233-263-7 231-793-3 [1] 231-793-3 [2]	7446-19-7 [1] 7733-02-0 [2]		28	mg/kg	2.469	69.14	mg/kg	0.00691 %		
13	0	TPH (C6 to C40) p		TPH		<10	mg/kg		<10	mg/kg	<0.001 %		<lod< td=""></lod<>

		T		_							T		
#			Determinand		CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLF				,			MC	
14		benzene				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
Ľ.,		601-020-00-8	200-753-7	71-43-2		40.001			40.001		40.0000001 70		1202
15		toluene				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
L		601-021-00-3	203-625-9	108-88-3		40.001			40.001		40.0000001 70		1202
16	0	ethylbenzene				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
L		601-023-00-4	202-849-4	100-41-4		40.001			40.001		10.0000001 70		(200
17		xylene 601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.002	mg/kg		<0.002	mg/kg	<0.0000002 %		<lod< th=""></lod<>
18	₫,	cyanides { salts exception of completerricyanides and r specified elsewher 006-007-00-5	lex cyanides such a mercuric oxycyanid	as ferrocyanides,		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< th=""></lod<>
_		pH			+								
19	0	Pi I	1	PH	-	7.8	рН		7.8	рН	7.8 pH		
20		naphthalene 601-052-00-2	202-049-5	91-20-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		acenaphthylene			T								
21	ľ	,	205-917-1	208-96-8	1	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
22	0	acenaphthene	201-469-6	83-32-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
23	0	fluorene	1	1		-0.1			-0.1		<0.00001 %		<lod< td=""></lod<>
23			201-695-5	86-73-7	1	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lud< td=""></lud<>
24	0	phenanthrene	201-581-5	85-01-8	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
25	0	anthracene		1		0.4			0.4		0.00004.0/		100
25			204-371-1	120-12-7	1	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
26	0	fluoranthene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
20			205-912-4	206-44-0		<0.1	ilig/kg		VO.1	mg/kg	<0.00001 /8		\LOD
27	Θ	pyrene	204-927-3	129-00-0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
28		benzo[a]anthracen	е			<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		601-033-00-9	200-280-6	56-55-3		40.1					40.00001 70		1200
29		chrysene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		601-048-00-0	205-923-4	218-01-9		30.1	g, ng		30.1	g/Ng	.0.0001 70		
30		benzo[b]fluoranthe	ene			<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
Ĺ		601-034-00-4	205-911-9	205-99-2			J g			J g			
31		benzo[k]fluoranthe 601-036-00-5	ne 205-916-6	207-08-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
32		benzo[a]pyrene; be 601-032-00-3	enzo[def]chrysene 200-028-5	50-32-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
33	0	indeno[123-cd]pyre	ene 205-893-2	193-39-5		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		dibenz[a,h]anthrac	1	1.20.00	\vdash								
34		601-041-00-2	200-181-8	53-70-3	1	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
35	0	benzo[ghi]perylene	9	1		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	_		205-883-8	191-24-2	-								
36	4	vanadium { divapentoxide }				11	mg/kg	1.785	19.637	mg/kg	0.00196 %		
37	0	monohydric pheno	215-239-8 Is	1314-62-1		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %	İ	<lod< td=""></lod<>
				P1186						Total	0.0164 %	-	
										Total:	0.0104 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)
 Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Page 14 of 44 OCD5H-ALU9H-O5C0R www.hazwasteonline.com

Classification of sample: WS06-02/11/2022-0.40

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code: WS06-02/11/2022-0.40 Chapter: Sample Depth: 0.40 m

Entry:

from contaminated sites)

Moisture content:

17%

(no correction)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

17: Construction and Demolition Wastes (including excavated soil

Hazard properties

None identified

Determinands

Moisture content: 17% No Moisture Correction applied (MC)

#		EU CLP index	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		number	EC Number	CAS Number	딩							MC	
1	4	antimony { antimor	•			<2	mg/kg	1.197	<2.394	mg/kg	<0.000239 %		<lod< th=""></lod<>
_		051-005-00-X	215-175-0	1309-64-4	-							_	
2	4	arsenic { arsenic tr	•			2.1	mg/kg	1.32	2.773	mg/kg	0.000277 %		
	\vdash		215-481-4	1327-53-3	-								
3	4	boron { diboron tric				0.49	mg/kg	3.22	1.578	mg/kg	0.000158 %		
			215-125-8	1303-86-2	_								
4	4	cadmium { cadmiu	1			<0.1	mg/kg	1.142	<0.114	mg/kg	<0.0000114 %		<lod< th=""></lod<>
		048-002-00-0	215-146-2	1306-19-0									
5	4	chromium in chrom chromium(III) oxide	e (worst case) }			3.6	mg/kg	1.462	5.262	mg/kg	0.000526 %		
			215-160-9	1308-38-9	-								
6	4	chromium in chromoxide }		,		<0.5	mg/kg	1.923	<0.962	mg/kg	<0.0000962 %		<lod< th=""></lod<>
		024-001-00-0	215-607-8	1333-82-0	_								
7	4	copper { dicopper o				3.1	mg/kg	1.126	3.49	mg/kg	0.000349 %		
		029-002-00-X	215-270-7	1317-39-1	_								
8	4	lead {			1	6.5	mg/kg		6.5	mg/kg	0.00065 %		
		082-001-00-6											
9	4	mercury { inorganic exception of mercu elsewhere in this A	ric sulphide and th		1	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
		080-002-00-6	,		-								
	æ	nickel { nickel(II) ca	arbonate }		1								
10	•	028-010-00-0	222-068-2 [1] 240-408-8 [2] 265-748-4 [3] 235-715-9 [4]	3333-67-3 [1] 16337-84-1 [2] 65405-96-1 [3] 12607-70-4 [4]		2.7	mg/kg	2.022	5.461	mg/kg	0.000546 %		
11	æ	selenium { nickel(II) selenite }			-0.0E	me/les	2 254	40 E00	ma/ka	-0.0000E00.0/		100
11	_	028-048-00-8	233-263-7	10101-96-9	1	<0.25	mg/kg	2.351	<0.588	mg/kg	<0.0000588 %		<lod< td=""></lod<>
	æ	zinc { zinc sulphate	}	,									
12	_	030-006-00-9	231-793-3 [1] 231-793-3 [2]	7446-19-7 [1] 7733-02-0 [2]		13	mg/kg	2.469	32.101	mg/kg	0.00321 %		
13	0	TPH (C6 to C40) p	etroleum group	TPH		<10	mg/kg		<10	mg/kg	<0.001 %		<lod< th=""></lod<>

#			Determinand		CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not
		EU CLP index number	EC Number	CAS Number	CLP			racioi			value	MC/	Used
14		benzene 601-020-00-8	200-753-7	71-43-2		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
15		toluene				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		601-021-00-3	203-625-9	108-88-3	+								
16	0	ethylbenzene 601-023-00-4	202-849-4	100-41-4		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
17		xylene 601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.002	mg/kg		<0.002	mg/kg	<0.0000002 %		<lod< td=""></lod<>
18	4	cyanides { salts exception of compl ferricyanides and n specified elsewher 006-007-00-5	ex cyanides such a nercuric oxycyanid	as ferrocyanides,		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
		pH			+							+	
19	0	Pil		PH		7.8	рН		7.8	pН	7.8 pH		
20		naphthalene 601-052-00-2	202-049-5	91-20-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
21	9	acenaphthylene	205-917-1	208-96-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
22	0	acenaphthene	201-469-6	83-32-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
23	0	fluorene	201-695-5	86-73-7	_	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
24	0	phenanthrene	201-581-5	85-01-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
25	0	anthracene	204-371-1	120-12-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
26	0	fluoranthene	205-912-4	206-44-0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
27	0	pyrene	204-927-3	129-00-0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
28		benzo[a]anthracen 601-033-00-9	e 200-280-6	56-55-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
29		chrysene 601-048-00-0	205-923-4	218-01-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
30		benzo[b]fluoranthe		205-99-2		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
31		benzo[k]fluoranthe		207-08-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
32		benzo[a]pyrene; be		50-32-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
33	0	indeno[123-cd]pyre		193-39-5	+	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
34		dibenz[a,h]anthrac		53-70-3	+	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
35	0	benzo[ghi]perylene		191-24-2	+	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
36	4	vanadium { divapentoxide }				4.2	mg/kg	1.785	7.498	mg/kg	0.00075 %		
37	0	monohydric pheno		P1186	+	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		1	J.	,						Total:	0.00814 %		1

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Classification of sample: WS07-02/11/2022-0.30

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code: WS07-02/11/2022-0.30 Chapter: Sample Depth: Entry: Moisture content: 15%

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)17 05 04 (Soil and stones other than those mentioned in 17 05

03)

Hazard properties

None identified

(no correction)

Determinands

Moisture content: 15% No Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	~	antimony { antimon 051-005-00-X	ny trioxide } 215-175-0	1309-64-4		<2	mg/kg	1.197	<2.394	mg/kg	<0.000239 %		<lod< th=""></lod<>
2	4	arsenic { arsenic tri		1327-53-3		7.3	mg/kg	1.32	9.638	mg/kg	0.000964 %		
3	4	boron { diboron tric				<0.4	mg/kg	3.22	<1.288	mg/kg	<0.000129 %		<lod< td=""></lod<>
4	4	cadmium { cadmiui		1306-19-0		0.11	mg/kg	1.142	0.126	mg/kg	0.0000126 %		
5	4	chromium in chrom		ds { • 1308-38-9		12	mg/kg	1.462	17.539	mg/kg	0.00175 %		
6	4	chromium in chromoxide }	nium(VI) compound	ds { chromium(VI)		<0.5	mg/kg	1.923	<0.962	mg/kg	<0.0000962 %		<lod< td=""></lod<>
7	4	copper { dicopper o	215-607-8 oxide; copper (I) ox 215-270-7	1333-82-0 kide } 1317-39-1		9.8	mg/kg	1.126	11.034	mg/kg	0.0011 %		
8	4	lead {	oounds with the ex	ception of those	1	22	mg/kg		22	mg/kg	0.0022 %		
9	4	082-001-00-6 mercury { inorganic exception of mercuelsewhere in this A	ric sulphide and th	•	1	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
10	4	080-002-00-6 nickel { nickel(II) ca 028-010-00-0	222-068-2 [1] 240-408-8 [2] 265-748-4 [3]	3333-67-3 [1] 16337-84-1 [2] 65405-96-1 [3]	_	8.4	mg/kg	2.022	16.988	mg/kg	0.0017 %		
11	4	selenium { nickel(II 028-048-00-8	235-715-9 [4]) selenite } 233-263-7	12607-70-4 [4]		0.43	mg/kg	2.351	1.011	mg/kg	0.000101 %		
12	4	zinc { zinc sulphate		7446-19-7 [1] 7733-02-0 [2]		43	mg/kg	2.469	106.18	mg/kg	0.0106 %		
13	0	TPH (C6 to C40) p	etroleum group	TPH		<10	mg/kg		<10	mg/kg	<0.001 %		<lod< td=""></lod<>

=		ı		Т							_		
#			Determinand		CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLF				,			MC	
14		benzene				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
Ľ.		601-020-00-8	200-753-7	71-43-2		40.001			40.001		10.0000001 70		1200
15		toluene				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
L		601-021-00-3	203-625-9	108-88-3		10.00					10.0000001 70		
16	0	ethylbenzene				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		601-023-00-4	202-849-4	100-41-4	1								
17		xylene 601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.002	mg/kg		<0.002	mg/kg	<0.0000002 %		<lod< th=""></lod<>
18	4	cyanides { salts exception of compl ferricyanides and r specified elsewher 006-007-00-5	lex cyanides such a mercuric oxycyanid	as ferrocyanides,		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
	_	pH			\vdash								
19	0	Pi I	1	PH	-	8.4	pН		8.4	рН	8.4 pH		
20		naphthalene 601-052-00-2	202-049-5	91-20-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
_		acenaphthylene											
21	ľ		205-917-1	208-96-8	1	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
22	Θ	acenaphthene	201-469-6	83-32-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
00	0	fluorene	,	1		0.4			0.4		0.00004.0/		100
23			201-695-5	86-73-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
24	0	phenanthrene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
24			201-581-5	85-01-8	1	<0.1	mg/kg		VO. 1	mg/kg	20.00001 /6		LOD
25	0	anthracene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			204-371-1	120-12-7		VO.1			VO.1	- Ing/kg	Q0.00001 70		
26	0	fluoranthene				0.13	mg/kg		0.13	mg/kg	0.000013 %		
			205-912-4	206-44-0									
27	0	pyrene				0.13	mg/kg		0.13	mg/kg	0.000013 %		
			204-927-3	129-00-0	-								
28		benzo[a]anthracen				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		601-033-00-9	200-280-6	56-55-3	-								
29		chrysene	005 000 4	010.01.0	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		601-048-00-0	205-923-4	218-01-9	-								
30		benzo[b]fluoranthe 601-034-00-4	205-911-9	205-99-2	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		benzo[k]fluoranthe	1	E00-33-2	+							H	
31		601-036-00-5	205-916-6	207-08-9	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		benzo[a]pyrene; be	1	F3. 00 0	\vdash								
32		601-032-00-3	200-028-5	50-32-8	1	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
22	0	indeno[123-cd]pyre	1	1	T	0.4	nc =:/l		0.4	nn =: //	-0.00004.04		1.05
33		,	205-893-2	193-39-5	1	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
34		dibenz[a,h]anthrac	ene			<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
54	L	601-041-00-2	200-181-8	53-70-3	L	ζ0.1	mg/kg		C U.1	mg/kg	VO.00001 76	L	\
35	0	benzo[ghi]perylene	e			<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			205-883-8	191-24-2		10				9/1.9	10.00001 70		
36	«	vanadium { diva				14	mg/kg	1.785	24.993	mg/kg	0.0025 %		
-		023-001-00-8	215-239-8	1314-62-1	+								
37	0	monohydric pheno	10	P1186	L	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
										Total:	0.0227 %		

Key			

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)
 Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Page 20 of 44 OCD5H-ALU9H-O5C0R www.hazwasteonline.com

Classification of sample: WS07-02/11/2022-0.90

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code: WS07-02/11/2022-0.90 Chapter: Sample Depth: Entry:

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Moisture content:

13%

(no correction)

Hazard properties

None identified

Determinands

Moisture content: 13% No Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	0	рН		PH		8.3 pH		8.3 pH	8.3 pH		
								Total:	0%	П	

Key

User supplied data

Determinand defined or amended by HazWasteOnline (see Appendix A)

Classification of sample: WS09-02/11/2022-0.90

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name:

WS09-02/11/2022-0.90
Chapter:
Sample Depth:

0.90 m
Entry:
Moisture content:
13%
(no correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 13% No Moisture Correction applied (MC)

#			Determinand		Note	User entered data	Conv.	Compound conc.	Classification value	Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP		i actor		value	MC,	Oseu
1	0	pH		PH		6.9 pH		6.9 pH	6.9 pH		
								Total:	0%		

Key

User supplied data

Determinand defined or amended by HazWasteOnline (see Appendix A)

Page 22 of 44 OCD5H-ALU9H-O5C0R www.hazwasteonline.com

Classification of sample: WS10-02/11/2022-0.10

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code: WS10-02/11/2022-0.10 Chapter: Sample Depth: 0.10 m Entry:

from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 03)

17: Construction and Demolition Wastes (including excavated soil

Moisture content: 6.9%

(no correction)

Hazard properties

None identified

Determinands

Moisture content: 6.9% No Moisture Correction applied (MC)

					_							_	1
#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
	2	antimony { antimor	ny trioxide }					4 407	0.004		0.000000.0/		1.00
1	_	051-005-00-X	215-175-0	1309-64-4	1	<2	mg/kg	1.197	<2.394	mg/kg	<0.000239 %		<lod< th=""></lod<>
2	æ	arsenic { arsenic tr	ioxide }	1		2.5		4 22	2.204		0.00022.0/		
2		033-003-00-0	215-481-4	1327-53-3	1	2.5	mg/kg	1.32	3.301	mg/kg	0.00033 %		
3	æ	boron { diboron tric	oxide; boric oxide	}		<0.4	ma/ka	3.22	<1.288	malka	-0.000120.9/		<lod< th=""></lod<>
3	_	005-008-00-8	215-125-8	1303-86-2	1	<0.4	mg/kg	3.22	<1.200	mg/kg	<0.000129 %		<lud< td=""></lud<>
4	æ	cadmium { cadmiu	m oxide }	·		0.13	mg/kg	1.142	0.149	mg/kg	0.0000149 %		
4	ľ	048-002-00-0	215-146-2	1306-19-0	1	0.13	ilig/kg	1.142	0.149	ilig/kg	0.0000149 /8		
5	*	chromium in chrom	e (worst case) }			2.8	mg/kg	1.462	4.092	mg/kg	0.000409 %		
	-		215-160-9	1308-38-9	-								
6	4	chromium in chromoxide }	. , ,	, , ,		<0.5	mg/kg	1.923	<0.962	mg/kg	<0.0000962 %		<lod< th=""></lod<>
		024-001-00-0	215-607-8	1333-82-0	-								
7	4	copper { dicopper o		•		2.8	mg/kg	1.126	3.152	mg/kg	0.000315 %		
_	\perp	029-002-00-X	215-270-7	1317-39-1	_							-	
8	4	lead {			1	7.4	mg/kg		7.4	mg/kg	0.00074 %		
		082-001-00-6											
9	4	mercury { inorganic exception of mercu elsewhere in this A	ıric sulphide and t		1	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
		080-002-00-6			1								
	æ	nickel { nickel(II) ca	arbonate }										
10		028-010-00-0	222-068-2 [1] 240-408-8 [2] 265-748-4 [3] 235-715-9 [4]	3333-67-3 [1] 16337-84-1 [2] 65405-96-1 [3] 12607-70-4 [4]		3.7	mg/kg	2.022	7.483	mg/kg	0.000748 %		
11	2	selenium { nickel(II) selenite }			0.20	m a /l c =:	2.254	0.000	ma m/l s ==	0.0000003.0/		
11		028-048-00-8	233-263-7	10101-96-9	1	0.38	mg/kg	2.351	0.893	mg/kg	0.0000893 %		
	æ	zinc { zinc sulphate) }						,				
12	_	030-006-00-9	231-793-3 [1] 231-793-3 [2]	7446-19-7 [1] 7733-02-0 [2]		7.8	mg/kg	2.469	19.261	mg/kg	0.00193 %		
13	0	TPH (C6 to C40) p	etroleum group	TPH		<10	mg/kg		<10	mg/kg	<0.001 %		<lod< th=""></lod<>

				-	T							$\overline{\Box}$	
#		Determinand EU CLP index			CLP Note	User entered data		Conv. Factor	Compound conc.		Classification value	MC Applied	Conc. Not Used
		number	EC Number	CAS Number	CLF							MC	
14		benzene				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		601-020-00-8	200-753-7	71-43-2	+								
15		toluene 601-021-00-3	202 625 0	400.00.0		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		ethylbenzene	203-625-9	108-88-3	+								
16	0	601-023-00-4	202-849-4	100-41-4	-	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		xylene	202 040 4	100 41 4	+								
17		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.002	mg/kg		<0.002	mg/kg	<0.0000002 %		<lod< td=""></lod<>
18	***	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }				<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
		006-007-00-5			-					_			
19	0	pH		PH		8.9	рН		8.9	рН	8.9 pH		
20		naphthalene 601-052-00-2	202-049-5	91-20-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
21	0	acenaphthylene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
22	0	acenaphthene	205-917-1	208-96-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			201-469-6	83-32-9		10.1	mg/ng				10.00001 70		
23	•	fluorene	201-695-5	86-73-7	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
24	0	phenanthrene	201-581-5	85-01-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
25	0	anthracene	204-371-1	120-12-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	0	fluoranthene	204-371-1	120-12-7	+								
26	9	nuoraninono	205-912-4	206-44-0	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
27	0	pyrene	204-927-3	129-00-0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
28		benzo[a]anthracen 601-033-00-9	e 200-280-6	56-55-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
=		chrysene	200-200-0	00-00-0	-								
29		601-048-00-0 205-923-4 218-01-9			+	<0.1	mg/kg		<0.1 mg/kg	<0.00001 %		<lod< td=""></lod<>	
20		benzo[b]fluoranthe		<u> </u>		.0.4	ma e: //		.0.4	m e // -	-0.00004.0/		1.00
30		601-034-00-4 205-911-9 205-99-2				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
31		benzo[k]fluoranthe			T	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		601-036-00-5 benzo[a]pyrene; be	205-916-6 enzoldeflchrysene	207-08-9	-								
32		601-032-00-3	200-028-5	50-32-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
33	•	indeno[123-cd]pyre	ene 205-893-2	193-39-5	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
34		dibenz[a,h]anthrac 601-041-00-2				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
35	0	benzo[ghi]perylene)	53-70-3	+	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
36	4	vanadium { • divapentoxide }				3.8	mg/kg	1.785	6.784	mg/kg	0.000678 %		
37	0	023-001-00-8 monohydric pheno	215-239-8 Is	1314-62-1	+	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
				P1186									
										Total:	0.00699 %	1	

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Classification of sample: WS10-02/11/2022-0.60

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name:

WS10-02/11/2022-0.60

Sample Depth:

0.60 m

Entry:

Moisture content:

11%

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

(no correction)

Determinands

Moisture content: 11% No Moisture Correction applied (MC)

#		Determinand EU CLP index		CLP Note	User entered data		Conv. Factor	Compound conc.		Classification value	MC Applied	Conc. Not Used	
1	~	antimony { antimon 051-005-00-X	ny trioxide } 215-175-0	1309-64-4		<2	mg/kg	1.197	<2.394	mg/kg	<0.000239 %		<lod< th=""></lod<>
2	4	arsenic { arsenic tri	ioxide } 215-481-4	1327-53-3		5.3	mg/kg	1.32	6.998	mg/kg	0.0007 %		
3	4	boron { diboron trioxide; boric oxide } 005-008-00-8				<0.4	mg/kg	3.22	<1.288	mg/kg	<0.000129 %		<lod< td=""></lod<>
4	æ	cadmium { cadmium oxide } 048-002-00-0 215-146-2 1306-19-0				<0.1	mg/kg	1.142	<0.114	mg/kg	<0.0000114 %		<lod< td=""></lod<>
5	4	chromium in chromium(III) compounds { chromium(III) oxide (worst case) }				8.5	mg/kg	1.462	12.423	mg/kg	0.00124 %		
6	4	215-160-9 1308-38-9 chromium in chromium(VI) compounds { chromium(VI) oxide }				<0.5	mg/kg	1.923	<0.962	mg/kg	<0.0000962 %		<lod< td=""></lod<>
7	4	copper { dicopper o	215-607-8 oxide; copper (I) ox 215-270-7	1333-82-0 kide } 1317-39-1	-	12	mg/kg	1.126	13.511	mg/kg	0.00135 %		
8	4	lead { • lead compounds with the exception of those specified elsewhere in this Annex (worst case) }				10	mg/kg		10	mg/kg	0.001 %		
9	4	082-001-00-6 mercury { inorganic compounds of mercury with the exception of mercuric sulphide and those specified elsewhere in this Annex }			1	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
10	4		222-068-2 [1] 240-408-8 [2] 265-748-4 [3]	3333-67-3 [1] 16337-84-1 [2] 65405-96-1 [3]		9.6	mg/kg	2.022	19.415	mg/kg	0.00194 %		
11		selenium { nickel(II)	235-715-9 [4]) selenite } 233-263-7	12607-70-4 [4]	-	0.55	mg/kg	2.351	1.293	mg/kg	0.000129 %		
12	4	zinc { zinc sulphate		7446-19-7 [1] 7733-02-0 [2]		30	mg/kg	2.469	74.079	mg/kg	0.00741 %		
13	0	TPH (C6 to C40) p	etroleum group	TPH		<10	mg/kg		<10	mg/kg	<0.001 %		<lod< td=""></lod<>

But Deleminand =		ſ		-	_	1	_				T	_		
1.	#					Note	User entere	d data		Compound	conc.		Applied	Conc. Not Used
10				EC Number	CAS Number	CLF				,			MC	
Septimentarian Sept	14		benzene				<0.001	ma/ka		<0.001	ma/ka	<0.0000001 %		<lod< td=""></lod<>
10			601-020-00-8	200-753-7	71-43-2		10.001			40.001		40.0000001 70		1202
Section Sect	15		toluene				<0.001	ma/ka		<0.001	ma/ka	<0.0000001 %		<lod< td=""></lod<>
10			601-021-00-3	203-625-9	108-88-3		10.001			40.001		40.0000001 70		1202
Section 19	16	0	ethylbenzene				<0.001	ma/ka		<0.001	ma/ka	<0.0000001 %		<i od<="" td=""></i>
17			601-023-00-4	202-849-4	100-41-4		10.001			40.001		10.0000001 70		1202
18	17			203-396-5 [2] 203-576-3 [3]	106-42-3 [2] 108-38-3 [3]		<0.002	mg/kg		<0.002	mg/kg	<0.0000002 %		<lod< th=""></lod<>
19 PH	18	₫,	exception of compl ferricyanides and r specified elsewher	lex cyanides such a mercuric oxycyanid	as ferrocyanides,		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< th=""></lod<>
19						+								
Particular Par	19	0	hu	T	DН	-	8.1	рН		8.1	рН	8.1 pH		
21	20		•	202-049-5			<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
20						1								
22 a acenaphthene 201-469-6 83-32-9	21			205-917-1	208-96-8	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod td="" <=""></lod>
23	22	0	acenaphthene	1	'		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
24	22	0	fluorene	1	1		-0.4			-0.1		-0.00004.0/		.1.00
24	23			201-695-5	86-73-7	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lud td="" <=""></lud>
25	24	0	phenanthrene	201-581-5	85-01-8	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
S		0	anthracene											
205-912-4 206-44-0	25			204-371-1	120-12-7	1	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
205-912-4 206-44-0	26	0	fluoranthene				-0.4	no ar/1 car		-0.1		-0.00004.0/		.1.00
27	20			205-912-4	206-44-0	1	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod td="" <=""></lod>
28	27	0	pyrene	204-927-3	129-00-0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
Colin Coli	28			е			<0.1	ma/ka		<0.1	ma/ka	<0.00001 %		<lod< td=""></lod<>
Column C			601-033-00-9	200-280-6	56-55-3	1_								
Solidar Soli	29		chrysene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
Solid Soli					218-01-9	1								
Solution Solution	30						<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
Siling S	<u> </u>			1	205-99-2	-								
32	31		601-036-00-5	205-916-6	207-08-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
S01-032-00-3 200-028-5 50-32-8	32				I		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
205-893-2 193-39-5 20.1 mg/kg 20.1 mg/kg 20.00001 % 2LOD	-			1	þ0-32-8	\vdash							H	<u> </u>
34	33	0		205-893-2	193-39-5		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
Solid Soli	34						<0.1	mg/ka		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
205-883-8 191-24-2 205-883-8 205-883-8 205-883-8 205-883-8 205-883-8 205-883-8 205-883-8 205-883-8 205-883-8 205-883-8 205-883-8 205-883-8 205-883-8 205-883-8 205-883-8 205-883-8 205-883-8				1	53-70-3									
205-883-8 191-24-2	35	0	benzo[ghi]perylene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
37 monohydric phenols	36	æ					7.2	mg/kg	1.785	12.853	mg/kg	0.00129 %		
37 monohydric phenols <0.1 mg/kg <0.00001 % <lod< td=""><td></td><td></td><td>•</td><td>215-239-8</td><td>1314-62-1</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></lod<>			•	215-239-8	1314-62-1	1								
Total: 0.0168 %	37	0		1			<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
				*							Total:	0.0168 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)
 Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Page 28 of 44 OCD5H-ALU9H-O5C0R www.hazwasteonline.com

Classification of sample: WS11-02/11/2022-0.20

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code: WS11-02/11/2022-0.20 Chapter: Sample Depth: 0.20 m

Entry:

from contaminated sites)

Moisture content:

19%

(no correction)

17 05 04 (Soil and stones other than those mentioned in 17 05 03)

17: Construction and Demolition Wastes (including excavated soil

Hazard properties

None identified

Determinands

Moisture content: 19% No Moisture Correction applied (MC)

	-				_			1				1	
#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
	æ	antimony { antimor	ny trioxide }	'		0		4 407	0.004		0.000000.07		<lod< th=""></lod<>
1	_		215-175-0	1309-64-4	1	<2	mg/kg	1.197	<2.394	mg/kg	<0.000239 %		<lod< th=""></lod<>
2	2	arsenic { arsenic tr	ioxide }			2.8	mg/kg	1.32	3.697	mg/kg	0.00037 %		
		033-003-00-0	215-481-4	1327-53-3		2.0	ilig/kg	1.32	3.097	mg/kg	0.00037 /8		
3	æ	boron { diboron tric	oxide; boric oxide	+		<0.4	mg/kg	3.22	<1.288	mg/kg	<0.000129 %		<lod< th=""></lod<>
3		005-008-00-8	215-125-8	1303-86-2	1	<0.4	ilig/kg	3.22	<1.200	mg/kg	<0.000129 /6		LOD
4	4	cadmium { cadmiu	<mark>m oxide</mark> }			0.18	mg/kg	1.142	0.206	mg/kg	0.0000206 %		
_		048-002-00-0	215-146-2	1306-19-0		0.10	ilig/kg	1.142	0.200	mg/kg	0.0000200 /0		
5	*	chromium in chrom chromium(III) oxide	e (worst case) }	•		4.1	mg/kg	1.462	5.992	mg/kg	0.000599 %		
_			215-160-9	1308-38-9									
6	~	chromium in chromoxide }	. , , .	,		<0.5	mg/kg	1.923	<0.962	mg/kg	<0.0000962 %		<lod< th=""></lod<>
		024-001-00-0	215-607-8	1333-82-0	-								
7	-	copper { dicopper o		•	4	7.1	mg/kg	1.126	7.994	mg/kg	0.000799 %		
		029-002-00-X	215-270-7	1317-39-1	_							-	
8		lead {			1	87	mg/kg		87	mg/kg	0.0087 %		
		082-001-00-6											
9		mercury { inorganic exception of mercu elsewhere in this A	ric sulphide and t		1	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
	i	080-002-00-6											
	8	nickel { nickel(II) ca	arbonate }										
10		028-010-00-0	222-068-2 [1] 240-408-8 [2] 265-748-4 [3] 235-715-9 [4]	3333-67-3 [1] 16337-84-1 [2] 65405-96-1 [3] 12607-70-4 [4]		6.3	mg/kg	2.022	12.741	mg/kg	0.00127 %		
11	æ.	selenium { nickel(II) selenite }			0.25	me/les	2 254	0.000	ma/les	0.0000000000		
11		028-048-00-8	233-263-7	10101-96-9	1	0.35	mg/kg	2.351	0.823	mg/kg	0.0000823 %		
	æ	zinc { zinc sulphate) }										
12		030-006-00-9	231-793-3 [1] 231-793-3 [2]	7446-19-7 [1] 7733-02-0 [2]		22	mg/kg	2.469	54.325	mg/kg	0.00543 %		
13	0	TPH (C6 to C40) p	etroleum group	TPH		210	mg/kg		210	mg/kg	0.021 %		

					Т					-		$\overline{\Box}$	
#		EII CI D :- d	Determinand	CAC No	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CL							MC	
14		benzene				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		601-020-00-8	200-753-7	71-43-2	+								
15		toluene	000 005 0	400.00.0		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		601-021-00-3 ethylbenzene	203-625-9	108-88-3	+								
16	0	601-023-00-4	202-849-4	100-41-4	4	<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		xylene	202-045-4	100-41-4	+								
17		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.002	mg/kg		<0.002	mg/kg	<0.0000002 %		<lod< td=""></lod<>
18	4	cyanides { salts exception of compl ferricyanides and r specified elsewher	lex cyanides such a mercuric oxycyanid	as ferrocyanides,		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
		006-007-00-5			-								
19	0	pH		PH		8	рН		8	рН	8pH		
20		naphthalene 601-052-00-2	202-049-5	91-20-3	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
21	0	acenaphthylene	205-917-1	208-96-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
22	0	acenaphthene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		_	201-469-6	83-32-9	+								
23	0	fluorene	201-695-5	86-73-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
24	0	phenanthrene	201-581-5	85-01-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
25	0	anthracene	204-371-1	120-12-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
26	0	fluoranthene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
27	0	pyrene	205-912-4	206-44-0	+	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		benzo[a]anthracen	204-927-3	129-00-0									
28		601-033-00-9	200-280-6	56-55-3	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
20		chrysene				0.4	ma =: /!		0.4	nn = //	-0.00004.00		.1.00
29		601-048-00-0	205-923-4	218-01-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
30		benzo[b]fluoranthe	ne			<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		601-034-00-4	205-911-9	205-99-2		ν	g/kg		ν. Ι		10.00001 70		
31		benzo[k]fluoranthe 601-036-00-5	ne 205-916-6	207-08-9	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
32		benzo[a]pyrene; be	enzo[def]chrysene			<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
33	0	601-032-00-3 indeno[123-cd]pyre	200-028-5 ene	50-32-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			205-893-2	193-39-5		,0.1	9/119			9/1.9	3.00031 /0		
34		dibenz[a,h]anthrac 601-041-00-2	ene 200-181-8	53-70-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
35	0	benzo[ghi]perylene)		+	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
36	e Ç	vanadium { • diva	205-883-8 nadium pentaoxide 215-239-8			4.2	mg/kg	1.785	7.498	mg/kg	0.00075 %		
37	0	monohydric pheno		1314-62-1	+	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
				P1186						Total	0.0208.0/		
										Total:	0.0398 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable | "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because It is highly unlikely that soils (generally a refractory matrix) will be classified as flammable at concentrations of 1.00% or less. (AGS, 2019). This property is thus disregarded as potentially flammable.

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.021%)

Classification of sample: WS11-02/11/2022-0.70

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code: WS11-02/11/2022-0.70 Chapter: Sample Depth: 0.70 m Entry:

03)

Moisture content:

10%

(no correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05

Hazard properties

None identified

Determinands

Moisture content: 10% No Moisture Correction applied (MC)

#		EU CLP index	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	_	antimony { antimor	ny trioxide } 215-175-0	1309-64-4		<2	mg/kg	1.197	<2.394	mg/kg	<0.000239 %		<lod< td=""></lod<>
2	æ	arsenic { arsenic tr		1327-53-3		5.7	mg/kg	1.32	7.526	mg/kg	0.000753 %	T	
3	æ	boron { diboron tric		1303-86-2		<0.4	mg/kg	3.22	<1.288	mg/kg	<0.000129 %		<lod< td=""></lod<>
4	æ\$	cadmium { cadmiui 048-002-00-0	<mark>m oxide</mark> } 215-146-2	1306-19-0		<0.1	mg/kg	1.142	<0.114	mg/kg	<0.0000114 %		<lod< td=""></lod<>
5	4	chromium in chrom	e (worst case) }			11	mg/kg	1.462	16.077	mg/kg	0.00161 %		
6	4	chromium in chromoxide }	215-160-9 nium(VI) compound 215-607-8	1308-38-9 ds { chromium(VI) 1333-82-0		<0.5	mg/kg	1.923	<0.962	mg/kg	<0.0000962 %		<lod< td=""></lod<>
7	4	copper { dicopper o	l			14	mg/kg	1.126	15.762	mg/kg	0.00158 %	T	
8	4	lead { • lead comp specified elsewhere			1	6.8	mg/kg		6.8	mg/kg	0.00068 %		
9	4	mercury { inorganic exception of mercu elsewhere in this A 080-002-00-6	ric sulphide and th		1	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
10	4	nickel { nickel(II) ca	arbonate } 222-068-2 [1] 240-408-8 [2] 265-748-4 [3] 235-715-9 [4]	3333-67-3 [1] 16337-84-1 [2] 65405-96-1 [3] 12607-70-4 [4]		11	mg/kg	2.022	22.247	mg/kg	0.00222 %		
11		selenium { nickel(II		10101-96-9		0.37	mg/kg	2.351	0.87	mg/kg	0.000087 %		
12	-	zinc { zinc sulphate		7446-19-7 [1] 7733-02-0 [2]		28	mg/kg	2.469	69.14	mg/kg	0.00691 %		
13	0	TPH (C6 to C40) p	etroleum group	ТРН		<10	mg/kg		<10	mg/kg	<0.001 %		<lod< td=""></lod<>

$\overline{}$		T			1						T	T	
#			Determinand		CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLF				,			MC	
14		benzene				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
Ľ.,		601-020-00-8	200-753-7	71-43-2		40.001			40.001		40.0000001 70		1202
15		toluene				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
L		601-021-00-3	203-625-9	108-88-3		40.001			40.001		40.0000001 70		1202
16	0	ethylbenzene				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
L		601-023-00-4	202-849-4	100-41-4		10.001			40.001		10.0000001 70		(200
17		xylene 601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.002	mg/kg		<0.002	mg/kg	<0.0000002 %		<lod< th=""></lod<>
18	₫,	cyanides { salts exception of completerricyanides and r specified elsewher 006-007-00-5	lex cyanides such a mercuric oxycyanid	as ferrocyanides,		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< th=""></lod<>
	_	pH											
19	0	Pi I	1	PH	-	8.1	рН		8.1	рН	8.1 pH		
20		naphthalene 601-052-00-2	202-049-5	91-20-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		acenaphthylene											
21			205-917-1	208-96-8	1	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
22	0	acenaphthene	201-469-6	83-32-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
23	0	fluorene	1	1		-0.1			-0.1		<0.00001 %		<lod< td=""></lod<>
23			201-695-5	86-73-7	1	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lud< td=""></lud<>
24	0	phenanthrene	201-581-5	85-01-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
0.5	0	anthracene	,	'		0.4			0.4		0.00004.0/		
25			204-371-1	120-12-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
26	0	fluoranthene				-0.1			<0.1		<0.00001 %		<lod< td=""></lod<>
20			205-912-4	206-44-0	1	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod td="" <=""></lod>
27	0	pyrene	204-927-3	129-00-0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
28		benzo[a]anthracen	е			<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		601-033-00-9	200-280-6	56-55-3		10					10.00001.70		1202
29		chrysene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		601-048-00-0	205-923-4	218-01-9									
30		benzo[b]fluoranthe				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		601-034-00-4	205-911-9	205-99-2	-								
31		benzo[k]fluoranthe 601-036-00-5	205-916-6	207-08-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
32		benzo[a]pyrene; be		I		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		601-032-00-3	200-028-5	50-32-8	\vdash							H	
33	0	indeno[123-cd]pyre	205-893-2	193-39-5		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
34		dibenz[a,h]anthrac				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		601-041-00-2	200-181-8	53-70-3	1								
35	0	benzo[ghi]perylene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
36	æ	vanadium { • diva	205-883-8 nadium pentaoxide	191-24-2 e; vanadium		8.4	mg/kg	1.785	14.996	mg/kg	0.0015 %		
		023-001-00-8	215-239-8	1314-62-1	-		3 3			5 5			
37	0	monohydric pheno	1	P1186		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		L	1	r						Total:	0.0171 %		
										. 0 . 0 . 1	2.2		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)
 Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Page 34 of 44 OCD5H-ALU9H-O5C0R www.hazwasteonline.com

Classification of sample: WS12-02/11/2022-0.40

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code: WS12-02/11/2022-0.40 Chapter: Sample Depth: 0.40 m

Entry:

03)

Moisture content:

18%

(no correction)

17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05

Hazard properties

None identified

Determinands

Moisture content: 18% No Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	æ å	antimony { antimor	ny trioxide }	1309-64-4		<2	mg/kg	1.197	<2.394	mg/kg	<0.000239 %		<lod< th=""></lod<>
2	4	arsenic { arsenic tr		1327-53-3		2.8	mg/kg	1.32	3.697	mg/kg	0.00037 %		
3	4	boron { diboron tric 005-008-00-8	oxide; boric oxide } 215-125-8	1303-86-2		<0.4	mg/kg	3.22	<1.288	mg/kg	<0.000129 %		<lod< th=""></lod<>
4	4	cadmium { cadmiu 048-002-00-0	m oxide } 215-146-2	1306-19-0		<0.1	mg/kg	1.142	<0.114	mg/kg	<0.0000114 %		<lod< td=""></lod<>
5	4	chromium in chrom	, , ,			20	mg/kg	1.462	29.231	mg/kg	0.00292 %		
6	4	chromium in chromoxide }	215-160-9 nium(VI) compound 215-607-8	1308-38-9 ds {		<0.5	mg/kg	1.923	<0.962	mg/kg	<0.0000962 %		<lod< th=""></lod<>
7	4	copper { dicopper o	L			9.4	mg/kg	1.126	10.583	mg/kg	0.00106 %		
8	4	lead { lead compospecified elsewher 082-001-00-6	pounds with the exe e in this Annex (wo		1	6.6	mg/kg		6.6	mg/kg	0.00066 %		
9	4	mercury { inorganicexception of mercuelsewhere in this A	ric sulphide and th		1	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< th=""></lod<>
10	æ\$		parbonate } 222-068-2 [1] 240-408-8 [2] 265-748-4 [3] 235-715-9 [4]	3333-67-3 [1] 16337-84-1 [2] 65405-96-1 [3] 12607-70-4 [4]		18	mg/kg	2.022	36.403	mg/kg	0.00364 %		
11	4	selenium { nickel(II 028-048-00-8	selenite 233-263-7	10101-96-9		0.68	mg/kg	2.351	1.599	mg/kg	0.00016 %		
12	æ	zinc { zinc sulphate 030-006-00-9	231-793-3 [1] 231-793-3 [2]	7446-19-7 [1] 7733-02-0 [2]		29	mg/kg	2.469	71.61	mg/kg	0.00716 %		
13	0	TPH (C6 to C40) p	etroleum group	ТРН		<10	mg/kg		<10	mg/kg	<0.001 %		<lod< td=""></lod<>

#			Determinand		CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLP			racioi			value	MC/	Osed
14		benzene 601-020-00-8	200-753-7	71-43-2		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
15		toluene	200 100 1	7 10 2		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
		601-021-00-3	203-625-9	108-88-3		10.001			10.00		10.000000. 70	L	
16	0	ethylbenzene 601-023-00-4	000 040 4	100-41-4		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
17		xylene 601-022-00-9	202-849-4	95-47-6 [1]		<0.002	mg/kg		<0.002	mg/kg	<0.000002 %		<lod< td=""></lod<>
17			203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.00Z	mg/kg		<0.00Z	mg/kg	V0.0000002 70		LOD
18	«	cyanides { salts exception of compl ferricyanides and r specified elsewher	ex cyanides such a nercuric oxycyanid	as ferrocyanides,		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
		006-007-00-5											
19	0	pH		PH		7.7	рН		7.7	pН	7.7 pH		
20		naphthalene 601-052-00-2	202-049-5	91-20-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
21	9	acenaphthylene	205-917-1	208-96-8	_	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
22	0	acenaphthene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
23	9	fluorene	201-469-6	83-32-9	+	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			201-695-5	86-73-7			<u> </u>						
24	0	phenanthrene	201-581-5	85-01-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
25	0	anthracene	204-371-1	120-12-7	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
26	0	fluoranthene	205-912-4	206-44-0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
27	0	pyrene	204-927-3	129-00-0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
28		benzo[a]anthracen 601-033-00-9	e 200-280-6	56-55-3	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
29		chrysene 601-048-00-0	205-923-4	218-01-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
30		benzo[b]fluoranthe		205-99-2		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
31		benzo[k]fluoranthe		207-08-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
32		benzo[a]pyrene; be	enzo[def]chrysene			<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
33	0	indeno[123-cd]pyre		50-32-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
34		dibenz[a,h]anthrac		193-39-5	+	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
35	9	601-041-00-2 benzo[ghi]perylene	200-181-8	53-70-3	+								<lod< td=""></lod<>
ან			205-883-8	191-24-2		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lud< td=""></lud<>
36	₫,	vanadium { divapentoxide }	nadium pentaoxide	e; vanadium 1314-62-1		20	mg/kg	1.785	35.704	mg/kg	0.00357 %		
37	0	monohydric pheno		P1186	+	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		l .	I.	<u>r</u>						Total:	0.0213 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Classification of sample: WS12-02/11/2022-0.80

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name: LoW Code: WS12-02/11/2022-0.80 Chapter: Sample Depth: Entry: Moisture content: 17%

17: Construction and Demolition Wastes (including excavated soil from contaminated sites)17 05 04 (Soil and stones other than those mentioned in 17 05

03)

Hazard properties

None identified

(no correction)

Determinands

Moisture content: 17% No Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	~	antimony { antimon 051-005-00-X	ny trioxide } 215-175-0	1309-64-4		<2	mg/kg	1.197	<2.394	mg/kg	<0.000239 %		<lod< th=""></lod<>
2	4	arsenic { arsenic tri	ioxide } 215-481-4	1327-53-3		2.3	mg/kg	1.32	3.037	mg/kg	0.000304 %		
3	4	boron { diboron tric				<0.4	mg/kg	3.22	<1.288	mg/kg	<0.000129 %		<lod< td=""></lod<>
4	4	cadmium { cadmiui 048-002-00-0	m oxide } 215-146-2	1306-19-0		<0.1	mg/kg	1.142	<0.114	mg/kg	<0.0000114 %		<lod< td=""></lod<>
5	4	chromium in chrom		ds {		16	mg/kg	1.462	23.385	mg/kg	0.00234 %		
6	4	chromium in chromoxide }	nium(VI) compound	ds { chromium(VI)		<0.5	mg/kg	1.923	<0.962	mg/kg	<0.0000962 %		<lod< td=""></lod<>
7	4	copper { dicopper o	215-607-8 oxide; copper (I) ox 215-270-7	1333-82-0 kide } 1317-39-1		7.6	mg/kg	1.126	8.557	mg/kg	0.000856 %		
8	4	lead {	oounds with the ex	ception of those	1	5.1	mg/kg		5.1	mg/kg	0.00051 %		
9	4	082-001-00-6 mercury { inorganic exception of mercuelsewhere in this A	ric sulphide and th	•	1	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
10	4	080-002-00-6 nickel { nickel(II) ca 028-010-00-0	arbonate } 222-068-2 [1] 240-408-8 [2] 265-748-4 [3]	3333-67-3 [1] 16337-84-1 [2] 65405-96-1 [3]		14	mg/kg	2.022	28.314	mg/kg	0.00283 %		
11	4	selenium { nickel(II 028-048-00-8	235-715-9 [4]) selenite } 233-263-7	12607-70-4 [4]		0.55	mg/kg	2.351	1.293	mg/kg	0.000129 %		
12	4	zinc { zinc sulphate		7446-19-7 [1] 7733-02-0 [2]		24	mg/kg	2.469	59.263	mg/kg	0.00593 %		
13	0	TPH (C6 to C40) p	etroleum group	TPH		<10	mg/kg		<10	mg/kg	<0.001 %		<lod< td=""></lod<>

=		T			_						T	T	
#			Determinand		CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLF							MC	
14		benzene				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
Ľ.,		601-020-00-8	200-753-7	71-43-2		40.001			40.001		40.0000001 70		1202
15		toluene				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
L		601-021-00-3	203-625-9	108-88-3		40.001			40.001		40.0000001 70		1202
16	0	ethylbenzene				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
L		601-023-00-4	202-849-4	100-41-4		10.001			40.001		10.0000001 70		(200
17		xylene 601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.002	mg/kg		<0.002	mg/kg	<0.0000002 %		<lod< th=""></lod<>
18	₫,	cyanides { salts exception of completerricyanides and r specified elsewher 006-007-00-5	lex cyanides such a mercuric oxycyanid	as ferrocyanides,		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< th=""></lod<>
_		pH			+								
19	0	pi 1	1	PH	-	8.1	pН		8.1	рН	8.1 pH		
20		naphthalene 601-052-00-2	202-049-5	91-20-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		acenaphthylene			1								
21			205-917-1	208-96-8	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
22	0	acenaphthene	201-469-6	83-32-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
23	0	fluorene	1	1		-0.1			-0.1		<0.00001 %		<lod< td=""></lod<>
23			201-695-5	86-73-7	1	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lud< td=""></lud<>
24	9	phenanthrene	201-581-5	85-01-8		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	0	anthracene			T								
25			204-371-1	120-12-7	1	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
00	0	fluoranthene	'	,	T	0.4			0.4		0.00004.0/		100
26			205-912-4	206-44-0	1	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
27	0	pyrene	204-927-3	129-00-0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
28		benzo[a]anthracen	е			<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		601-033-00-9	200-280-6	56-55-3		VO.1	mg/kg		40.1	mg/kg	Q0.00001 70		LOD
29		chrysene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		601-048-00-0	205-923-4	218-01-9		10					10.00001 70		1202
30		benzo[b]fluoranthe				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		601-034-00-4	205-911-9	205-99-2	_								
31			205-916-6	207-08-9		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
32		benzo[a]pyrene; be	enzo[def]chrysene	50-32-8	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
-	-	indeno[123-cd]pyre	1	PU-02-0	+							H	
33	0	indeno[125-cd]pyre	205-893-2	193-39-5		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
34		dibenz[a,h]anthrac	ene			<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		601-041-00-2	200-181-8	53-70-3	L	30.1			30.1	g/Ng	.0.0001 70		
35	0	benzo[ghi]perylene		404.04.6		<0.1	mg/kg	1	<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	_		205-883-8	191-24-2	\vdash								
36	4	vanadium { • diva pentoxide } 023-001-00-8				17	mg/kg	1.785	30.348	mg/kg	0.00303 %		
37	0	monohydric pheno	215-239-8 Is	1314-62-1		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %	İ	<lod< td=""></lod<>
_			1	P1186						Total	0.0177.9/		
										Total:	0.0177 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)
 Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound

concentration

<LOD Below limit of detection

ND Not detected

CLP: Note 1 Only the metal concentration has been used for classification

Page 40 of 44 OCD5H-ALU9H-O5C0R www.hazwasteonline.com

Appendix A: Classifier defined and non GB MCL determinands

• chromium(III) oxide (worst case) (EC Number: 215-160-9, CAS Number: 1308-38-9)

Description/Comments: Data from C&L Inventory Database

Data source: https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/33806

Data source date: 17 Jul 2015

Hazard Statements: Acute Tox. 4; H332 , Acute Tox. 4; H302 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315 , Resp. Sens. 1; H334 , Skin Sens. 1; H317 , Repr. 1B; H360FD , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

lead compounds with the exception of those specified elsewhere in this Annex (worst case)

GB MCL index number: 082-001-00-6

Description/Comments: Worst Case: IARC considers lead compounds Group 2A; Probably carcinogenic to humans; Lead REACH Consortium, following MCL protocols, considers lead compounds from smelting industries, flue dust and similar to be Carcinogenic category 1A

Additional Hazard Statement(s): Carc. 1A; H350 Reason for additional Hazards Statement(s):

20 Nov 2021 - Carc. 1A; H350 hazard statement sourced from: IARC Group 2A (Sup 7, 87) 2006; Lead REACH Consortium www.reach-lead.eu/substanceinformation.html (worst case lead compounds). Review date 29/09/2015

• TPH (C6 to C40) petroleum group (CAS Number: TPH)

Description/Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013

Data source: WM3 1st Edition 2015 Data source date: 25 May 2015

Hazard Statements: Flam. Liq. 3; H226 , Asp. Tox. 1; H304 , STOT RE 2; H373 , Muta. 1B; H340 , Carc. 1B; H350 , Repr. 2; H361d , Aquatic Chronic 2; H411

ethylbenzene (EC Number: 202-849-4, CAS Number: 100-41-4)
 GB MCL index number: 601-023-00-4

Description/Comments:

Additional Hazard Statement(s): Carc. 2; H351 Reason for additional Hazards Statement(s):

20 Nov 2021 - Carc. 2; H351 hazard statement sourced from: IARC Group 2B (77) 2000

• salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex

GB MCL index number: 006-007-00-5

Description/Comments: Conversion factor based on a worst case compound: sodium cyanide

Additional Hazard Statement(s): EUH032 >= 0.2 % Reason for additional Hazards Statement(s):

20 Nov 2021 - EUH032 >= 0.2 % hazard statement sourced from: WM3, Table C12.2

pH (CAS Number: PH)

Description/Comments: Appendix C4 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: None.

acenaphthylene (EC Number: 205-917-1, CAS Number: 208-96-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Acute Tox. 4; H302 , Acute Tox. 1; H330 , Acute Tox. 1; H310 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315

acenaphthene (EC Number: 201-469-6, CAS Number: 83-32-9)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410 , Aquatic Chronic 2; H411

• fluorene (EC Number: 201-695-5, CAS Number: 86-73-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015

Hazard Statements: Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

phenanthrene (EC Number: 201-581-5, CAS Number: 85-01-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015

Hazard Statements: Acute Tox. 4; H302 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Carc. 2; H351 , Skin Sens. 1; H317 , Aquatic Acute 1; H400 , Aquatic

Chronic 1; H410, Skin Irrit. 2; H315

anthracene (EC Number: 204-371-1, CAS Number: 120-12-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 17 Jul 2015

Hazard Statements: Eye Irrit. 2; H319, STOT SE 3; H335, Skin Irrit. 2; H315, Skin Sens. 1; H317, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

• fluoranthene (EC Number: 205-912-4, CAS Number: 206-44-0)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 21 Aug 2015

Hazard Statements: Acute Tox. 4; H302, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

pyrene (EC Number: 204-927-3, CAS Number: 129-00-0)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 2014
Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 21 Aug 2015

Hazard Statements: Skin Irrit. 2; H315, Eye Irrit. 2; H319, STOT SE 3; H335, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

• indeno[123-cd]pyrene (EC Number: 205-893-2, CAS Number: 193-39-5)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015 Hazard Statements: Carc. 2: H351

• benzo[ghi]perylene (EC Number: 205-883-8, CAS Number: 191-24-2)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 28/02/2015 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 23 Jul 2015

Hazard Statements: Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

divanadium pentaoxide; vanadium pentoxide (EC Number: 215-239-8, CAS Number: 1314-62-1)

GB MCL index number: 023-001-00-8

Description/Comments:

Additional Hazard Statement(s): Carc. 1B; H350, Acute Tox. 3; H301, Acute Tox. 2; H330

Reason for additional Hazards Statement(s):

20 Sep 2022 - Carc. 1B; H350 hazard statement sourced from: ATP 18 (Regulation (EU) 2022/692) considers vanadium pentoxide to be Carc. 1B; H350. The GB MCL Agency has reached the same opinion [but is yet to formerly make this change to the MCL List]. Substance has therefore been self-classified.

28 Sep 2022 - Acute Tox. 3; H301 hazard statement sourced from: ATP 18 (Regulation (EU) 2022/692) considers vanadium pentoxide to be "Acute tox 3; H301". The GB MCL Agency has reached the same opinion [but is yet to formerly make this change to the MCL List]. Substance has therefore been self-classified.

28 Sep 2022 - Acute Tox. 2; H330 hazard statement sourced from: ATP 18 (Regulation (EU) 2022/692) considers vanadium pentoxide to be "Acute tox 2; H330". The GB MCL Agency has reached the same opinion [but is yet to formerly make this change to the MCL List]. Substance has therefore been self-classified.

monohydric phenols (CAS Number: P1186)

Description/Comments: Combined hazards statements from harmonised entries in CLP for phenol, cresols and xylenols (604-001-00-2, 604-004-00-9, 604-006-00-X)

Data source: CLP combined data Data source date: 26 Mar 2019

Hazard Statements: Muta. 2; H341, Acute Tox. 3; H331, Acute Tox. 3; H311, Acute Tox. 3; H301, STOT RE 2; H373, Skin Corr. 1B; H314, Skin Corr. 1B; H314 >= 3 %, Skin Irrit. 2; H315 1 £ conc. < 3 %, Eye Irrit. 2; H319 1 £ conc. < 3 %, Aquatic Chronic 2; H411

Appendix B: Rationale for selection of metal species

antimony {antimony trioxide}

Worst case CLP species based on hazard statements/molecular weight and low solubility. Industrial sources include: flame retardants in electrical apparatus, textiles and coatings

Page 42 of 44 OCD5H-ALU9H-O5C0R www.hazwasteonline.com

arsenic {arsenic trioxide}

Reasonable case CLP species based on hazard statements/molecular weight and most common (stable) oxide of arsenic. Industrial sources include: smelting; main precursor to other arsenic compounds

boron {diboron trioxide; boric oxide}

Reasonable case CLP species based on hazard statements/ molecular weight, physical form and low solubility. Industrial sources include: fluxing agent for glass/enamels; additive for fibre optics, borosilicate glass

cadmium {cadmium oxide}

Reasonable case CLP species based on hazard statements/molecular weight, very low solubility in water. Industrial sources include: electroplating baths, electrodes for storage batteries, catalysts, ceramic glazes, phosphors, pigments and nematocides. Worst case compounds in CLP: cadmium sulphate, chloride, fluoride & iodide not expected as either very soluble and/or compound's industrial usage not related to site history

chromium in chromium(III) compounds {chromium(III) oxide (worst case)}

Reasonable case species based on hazard statements/molecular weight. Industrial sources include: tanning, pigment in paint, inks and glass

chromium in chromium(VI) compounds {chromium(VI) oxide}

Worst case CLP species based on hazard statements/molecular weight. Industrial sources include: production stainless steel, electroplating, wood preservation, anti-corrosion agents or coatings, pigments

copper {dicopper oxide; copper (I) oxide}

Reasonable case CLP species based on hazard statements/molecular weight and insolubility in water. Industrial sources include: oxidised copper metal, brake pads, pigments, antifouling paints, fungicide. Worse case copper sulphate is very soluble and likely to have been leached away if ever present and/or not enough soluble sulphate detected.

lead (lead compounds with the exception of those specified elsewhere in this Annex (worst case))

There is an insufficient quantity of Chromium VI available to stoichiometrically form Chromate Compounds, as such the next most likely worse-case species has been selected for assessment. The concentration of Chromium VI is noted to be less than the detection limit of the analytical test.

mercury {inorganic compounds of mercury with the exception of mercuric sulphide and those specified elsewhere in this Annex}

Reasonable case CLP selection as fulminate not likely to be present. Inorganic Mercury is more likely to be present. Dichloride is highly soluble and is unlikely to be present unless there are significant sources shown from Desk Study information.

nickel {nickel(II) carbonate}

Reasonable case CLP entry as halides, hexacyanoferrate, and sulfate are very soluble, thiocyanate is not likely to be present from industrial uses and is also soluble, insufficient Hexavalent Chromium to form the chromate species. Nickel Carbonate is largely insoluble and present in ceramics and potteries that may be present in Made Ground particularly.

selenium {nickel(II) selenite}

Reasonable case CLP compound unless Se is present in sufficient quantities to stoichiometrically form the Ni-Se compounds.

zinc {zinc sulphate}

There is an insufficient quantity of Chromium VI available to stoichiometrically form Chromate Compounds, as such the next most likely worse-case species has been selected for assessment. The concentration of Chromium VI is noted to be less than the detection limit of the analytical test.

cyanides {salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex}

Harmonised group entry used as most reasonable case as complex cyanides and those specified elsewhere in the annex are not likely to be present in this soil: [Note conversion factor based on a worst case compound: sodium cyanide]

vanadium {divanadium pentaoxide; vanadium pentoxide}

worst case CLP species

Appendix C: Version

HazWasteOnline Classification Engine: WM3 1st Edition v1.2.GB - Oct 2021
HazWasteOnline Classification Engine Version: 2023.25.5511.10206 (25 Jan 2023)
HazWasteOnline Database: 2023.25.5511.10206 (25 Jan 2023)

This classification utilises the following guidance and legislation:

WM3 v1.2.GB - Waste Classification - 1st Edition v1.2.GB - Oct 2021

CLP Regulation - Regulation 1272/2008/EC of 16 December 2008

1st ATP - Regulation 790/2009/EC of 10 August 2009

2nd ATP - Regulation 286/2011/EC of 10 March 2011

3rd ATP - Regulation 618/2012/EU of 10 July 2012

4th ATP - Regulation 487/2013/EU of 8 May 2013

Correction to 1st ATP - Regulation 758/2013/EU of 7 August 2013

5th ATP - Regulation 944/2013/EU of 2 October 2013

6th ATP - Regulation 605/2014/EU of 5 June 2014

WFD Annex III replacement - Regulation 1357/2014/EU of 18 December 2014

Revised List of Waste 2014 - Decision 2014/955/EU of 18 December 2014

7th ATP - Regulation 2015/1221/EU of 24 July 2015

8th ATP - Regulation (EU) 2016/918 of 19 May 2016

9th ATP - Regulation (EU) 2016/1179 of 19 July 2016

10th ATP - Regulation (EU) 2017/776 of 4 May 2017

HP14 amendment - Regulation (EU) 2017/997 of 8 June 2017

13th ATP - Regulation (EU) 2018/1480 of 4 October 2018

14th ATP - Regulation (EU) 2020/217 of 4 October 2019

15th ATP - Regulation (EU) 2020/1182 of 19 May 2020

The Chemicals (Health and Safety) and Genetically Modified Organisms (Contained Use)(Amendment etc.) (EU Exit)

Regulations 2020 - UK: 2020 No. 1567 of 16th December 2020

The Waste and Environmental Permitting etc. (Legislative Functions and Amendment etc.) (EU Exit) Regulations 2020 - UK:

2020 No. 1540 of 16th December 2020

GB MCL List - version 1.1 of 09 June 2021

Page 44 of 44 OCD5H-ALU9H-O5C0R www.hazwasteonline.com

